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Abstract

Signal parameters carry vital characteristic information about any physical

process. Fourier bases have been of tremendous analytical potential that still spans

the space of signature analysis. This thesis attempts to retrieve phase information

of signals with time-varying and constant frequencies to gain insight into such

processes.

We adopt a model-based approach to estimate the instantaneous frequency

(IF) of multiple time-varying components using a linearized constrained Kalman-

based method. The method is used for estimating the chirp-like characteristic

features of gravitational waves emanated from the merging of binary black-holes.

The phase abstraction property of the method is used for extracting the dominant

modes of the signal. The removal of dominant modes reduces the spectral leakage

for stationary frequency estimation. As a consequence, previously obscured low-

magnitude frequency components are observable.

We propose two spectral estimators in the thesis for stationary conditions when

the frequency is constant in the observation window. The Rayleigh-quotient-based

method uses the well-known Fourier basis constructed Eigenvectors to estimate

the unknown Eigenvalues of a symmetric autocorrelation matrix. The technique

has high frequency and amplitude accuracy and requires low computational re-

sources. The approach is data-driven and doesn’t require any information about

the underlying model. Alternatively, the proposed Bayesian spectral estimator is

model-based and can incorporate knowledge of the underlying model. It is sequen-

tial and has higher accuracy than the Rayleigh-quotient spectrum. The use of an

accurate model can further improve the precision of the approach.
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One significant impact of this thesis is the detection and estimation of low-

amplitude sinusoidal components buried under noise and masked by the presence

of high-magnitude elements. A similar and practical situation arises while de-

tecting weak induction motor faults. Hence, the case study of detecting weak

SCIM faults is used to validate the proposed algorithms. Furthermore, a minimum

distance-based hypothesis test is recommended for incorporating the inherent fault

information. Two embedded platforms are also presented in this thesis for hard-

ware realization of the suggested algorithms. The SIMULINK Real-Time (SLRT)-

based hardware is appropriate for detecting faults in a single motor. However, the

hardware is costly, but its flexibility for initial feasibility studies is advantageous.

On the other hand, the Internet-of-things-based system has been tailor-made for

dedicated fault detection in a multiple-motor scenario.

Keywords: Bayes theorem, closely spaced sinusoids, constrained Kalman filter,

current analysis, fault diagnosis, Gauss-Markov process, gravitational waves, hy-

pothesis testing, incipient faults, induction motor, instantaneous frequency estima-

tion, Internet of things, non-stationary signal, Rayleigh-quotient, signal-conditioning,

Simulink Real-Time, spectral estimation, time-varying autoregressive process, vi-

bration analysis.
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C H A P T E R 1

Introduction

A stochastic process is said to be strictly stationary if its statistical properties

do not change with time. Majority of signal processing applications, including

spectral estimation, detection, general estimation theory, and system modeling

assumes the underlying model to be wide sense stationary. However, it is prudent

to invoke a test to determine the stationarity of the data. In classical literature,

most of the stationarity tests involved finding the whiteness and Gaussanity of the

signal. Although, hypothesis testing for detecting stationarity [2–4] and stationary

segment of data [5] is recommended. According to Chau [6], “Majority of non-

stationarities occur due to temporally unstable variance or variable frequency”

Frequency estimators are classified as stationary and non-stationary depending

on the statistical properties of the input signal. Stationary frequency estimators

can be classified [7] into (a) classical methods like discrete Fourier transforms,

power spectral densities; (b) high-resolution subspace-based spectral estimators

like multiple signal classifier (MUSIC) [8], estimation of signal parameters via

rotational invariance technique (ESPRIT) [9]; and (c) model-based approaches
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like autoregressive (AR), autoregressive moving average (ARMA), and moving

average spectral estimators [7]. The majority of signals encountered in various

applications are non-stationary [10] due to presence of time-varying frequency

component. The estimation of instantaneous frequency (IF) have been used to

estimate time-varying frequency components. Applications of IF estimation in-

clude speech processing [11], power quality estimation [12], disease detection [13],

machine fault diagnosis [14], etc.

In this thesis we tackle the problem of estimating frequency under stationary

and non-stationary conditions and use the estimates to detect weak faults in elec-

tromechanical systems. The primary challenge of fault diagnosis is the detection

and estimation of minute fault-specific signatures which are obscured by noise and

are vaguely discernible in the presence of multiple other dominant components.

The detection of weak faults enable us to elevate the laboratory case study into

a practical implementation where incipient faults can be detected with high cer-

tainty well before a failure takes place. The detection of early-stage defects can

reduce plant downtime, avoid recurring servicing costs, and can help in predictive

maintenance. Squirrel cage induction motors (SCIM) are the workhorse of any in-

dustry and have been very popular due to their robustness and low-maintenance.

We have tested the efficiency of the developed frequency estimators by using a

case study of SCIM weak fault detection. For the purpose, we have used a 22-kW

SCIM motor setup. Additionally, we have also used the publicly available Case

Western Reserve University (CWRU) bearing fault data [15] for comparison and

validation.
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1.1 Literature Survey

The literature survey starts with a description of different spectral estimators fol-

lowed by a survey of available IF estimation techniques. The frequency estimation

survey is followed by the case-study of SCIM fault diagnosis. Considering the dif-

ferent problems associated with the detection of SCIM faults, we have divided the

review of existing literature into different sections. We start with a description of

various faults that affect the SCIM. This followed by an account of different input

signals that are used for the fault detection. The next section reviews the existing

methods of fault detection and classification algorithms.

1.1.1 Review of Existing Spectral Estimators

Spectral estimation of a wide-sense stationary (WSS) signal buried in white noise

has seen significant development for the last 50 years. The use of spectral esti-

mates has been phenomenal in detecting SCIM faults [16]. Lower computational

complexity and the emergence of digital signal processors made Fourier transform

indispensable for many ground-breaking applications. However, the low mean-

squared error (MSE) requirement and improved resolution have driven the next

level of research.

The orthogonality of eigenvectors of the Hermitian autocorrelation matrix has

been of significant consequence. With the initial formulation by Pisarenko and

later modifications by Schmidt has led to the MUSIC algorithm [8]. MUSIC still

has been able to encourage the research community for further development in

iMUSIC [17], Gold-MUSIC [18], etc. When the frequency components are closely-

spaced, the interference due to the dominant components degrades the estimation

of weak components. [19] reduced the effect of interference mathematically by

relegating the interfering eigenvectors to an arbitrary matrix before computing
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the MUSIC null-spectra.

The subspace-based spectral estimators have inherently higher resolution, but

they also require an accurate estimate of the model-order [20]. On the other hand,

parametric model-based spectral estimators use the underlying model information

to improve the resolution and decrease the MSE. Resolution of the model-based

methods is dependent on the model-order instead of the data length (N). Although

advantageous under data length restrictions, an arbitrary high-order selection can

result in spurious peaks and spectral splitting.

The model-based methods require an inversion of the autocorrelation matrix.

Maximum likelihood estimation (MLE) of the spectrum is asymptotically efficient.

However, MLE is computationally complex and requires solving a non-convex

multi-modal cost function [19]. Faster implementation of the inversion can be

achieved by using the structure of the Toeplitz matrix. Spectral estimation with

structured Toeplitz constraints can be found in [21]. The absence of regularization

in AR-spectrum estimation leads to the inversion of an ill-conditioned matrix. The

methods discussed till now have not considered any additional information about

the estimated parameters. In [22], the authors have used a Gaussian prior for

spectral estimation. The maximum-a-posterior (MAP) estimation solves a regu-

larized least square problem. The regularized least square involves the inversion

of a well-conditioned matrix.

Djuric and Li [23] provided the systematic use of prior distribution of signal and

noise parameters for posterior-frequency estimation. [24] used Tikhonov prior for

both the phase and frequency parameter for MAP estimation. The use of a sparse

Bayesian model with l1-norm minimization can be found in [25]. A Bernoulli-

Gaussian prior was used in [26]. The discrete Bernoulli’s distribution ascertained

the model order, or the number of components present in the signal, whereas the

Gaussian prior localized the frequency. The mixture model was then solved using
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the variational Bayes framework.

Use of Bayesian inference for estimating spectrogram of a quasi-stationary

signal was demonstrated in [27]. The literature discussed until now have used

a prior on the parameters of the harmonic model. However, the requirement

of sequential detection of non-stationarity has been instrumental in defining the

model parameters as a first-order Gauss-Markov process [5]. In [5], the authors

have considered a linear system’s output for a given input to estimate the time-

varying parameters. In this thesis, we have modeled the input signal as a time-

varying AR (TVAR) process. The parameters of the model are considered to be

random, defined by a first-order Gauss-Markov process.

Till now, we have considered the constant frequency under stationary condi-

tions. However, most natural phenomenons are characterized by the presence of

time-dependent frequency components. The next section examines the develop-

ment of IF estimation algorithms.

1.1.2 Survey of Instantaneous Frequency Estimators

IF estimators have mainly revolved around linear transformations like short-time

Fourier transform (STFT), wavelet transforms, along with their quadratic coun-

terparts - the spectrogram, and scalogram, respectively [28]. Wigner-Ville-type

distributions have overcome the difficulties of bias and low-resolution of classical

estimators. However, existence of cross-term while estimating IF of multiple com-

ponents affected the method invariably [29]. Also, the length of the data window

determines the resolving power of the classical estimators.

The S-transform used a Gaussian window-based STFT. The variance of the

Gaussian function decides the window length and hence, the resolution of the S-

transform. An angle parameter was added to the Gaussian function to tune the

window for variable chirp-rates in fractional Fourier transform [30]. A single global
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parameter cannot select the optimum window of the transformation for multiple

components with different chirp-rates. Hence, local optimization were performed

to find the optimal window at each point in the time-frequency (TF) plane [31].

A new approach towards TF-analysis emerged with the inclusion of the phase

information [28]. The phase information concentrated the TF-energy and resulted

in the development of the reassignment method (RM) [32] and the synchrosqueezed

technique (SST) [33]. The advantage of SST in extracting the modes of a non-

stationary signal like empirical mode decomposition (EMD) makes it advantageous

over RM [34]. For multicomponent signals with non-harmonic modes, Pham and

Meignen extended the second-order SST [35] to higher orders in [36] for nar-

row band energy distribution and increased accuracy. The authors in [36] have

used the example of gravitational waves as a practical application. An iterative

demodulation-based post-processing technique for improving the resolution of SST

and RM under low signal to noise ratio (SNR) was proposed in [37].

The demodulation enhances the energy localization in the TF plane. For mul-

tiple components, the TF plane is partitioned to accommodate each component

separately. The demodulation is repeated until a desired MSE is achieved. A sim-

ilar approach can also be found in [38], where multiple components are extracted

individually by parametric demodulation using the estimate of the IF followed by

bandpass filtering. This demodulation results in a stationary component having

the initial frequency as its sole constituent. Therefore, the problem with frequency

components that are closely-spaced or having intersecting trajectories needs to be

addressed. In [39], a fast non-linear least square method was presented for finding

the initial frequency and the chirp-rate for a linear-chirp model with real sinu-

soids. However, its performance in estimating quadratic frequency components

needs validation.

The least-squares estimates are perturbed in the presence of outliers. A similar
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phenomenon is observed when IF is estimated from TF distribution. Random sam-

ple consensus (RANSAC) reduced the impact of the outliers for single component

estimated using Wigner distribution [40]. However, the MSE was -20 dB for 5 dB

SNR. The proposed algorithm has a normalized-MSE (NMSE) of -30 dB under 5

dB SNR . Improvement with RANSAC for multiple overlapping components was

shown in [41].

Majority of the methods surveyed are offline, and the IF estimation require

individual component decomposition. Sequential estimation with minimum-MSE

of the TVAR parameters using Kalman filters and subsequent spectral estimation

was shown in [42, 43]. The state propagation and measurement models are linear

[42, 43]. However, direct IF estimation from the TVAR process leads to a non-

linear observation model. As a result, the extended Kalman filter (EKF) [44] for

single component and harmonic components [12] are used.

Ahn et al. [45] have used different strategies for state estimation of a Markovian

jump system. Model selection using probabilistic neural networks and Kalman

filter for optimal state estimation is reported in [46]. However, for IF estimation,

the model is non-linear and may change at each instant of time. As a result,

the number of test hypotheses grows exponentially with time, and the estimation

becomes intractable [45]. An adaptive notch filter formulation was employed using

a recursive prediction error algorithm in [47]. Based on [47], a self-optimizing

method was used in [48] for multiple components, with further research in [49].

The use of a phase-locked loop (PLL) for non-sinusoidal frequency estimation [50]

is encouraging. However, PLL is limited due to incapability to estimate multiple

components. Based on the brief survey of literature, we can summarize that

i. The conventional multi-component IF estimators require the signal to be

decomposed into individual subcomponents before determining the ridges in

the TF energy distribution [31].
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ii. Decomposition of cross-over components and closely-spaced frequencies is

yet unsolved.

iii. The IF estimation performance is limited by the Gabor-Heisenberg uncer-

tainty principle in terms time and frequency resolutions where one can only

be gained at the expense of the other [51]. The uncertainty severely deterio-

rates the performance of conventional methods under higher chirp-rates and

components exhibiting abrupt changes in frequency.

iv. The resolution of Fourier-based methods is dependent on the window length,

and that of the model-based techniques are dependent on the number of

parameters or the lags. Over-estimation of the model-order improves the

resolution, but it can result in spurious ridges in the TF-plane. On the other

hand, the sequential estimators mainly dealt with the estimation of a single

component.

1.1.3 Squirrel Cage Induction Motor Faults

Various surveys have estimated that mechanical faults of damaged bearings con-

stitute most of the SCIM faults [52], followed closely by stator faults and broken

rotor bars (BRB) [53]. Improvements in the manufacturing and fabrication pro-

cesses have reduced rotor faults. However, existing challenges of detecting rotor

faults fosters relevant research [53]. In recent times, the study of stator fault takes

precedence over the rotor and bearing defects, as emphasized by Fig. 1.1. A brief

overview of different faults [54] that plague induction motors are described in the

following subsection.
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Figure 1.1: Faults undertaken in published works from 2011 to June 2020. Data
source: Scopus [1].

1.1.3.1 Bearing Faults

As depicted in Fig. 1.2, bearing faults can be classified into three major categories

depending upon the damage to a particular component. These faults are outer-

raceway fault, inner-raceway fault, and rolling element fault. Apart from these,

faults can also plague the cage that holds the rolling elements.

Defect Defect Defect

(b)(a) (c)

Figure 1.2: Different types of bearing defects. From left to right: Inner-raceway
fault, outer-raceway fault, and rolling-element fault.

i. Outer-raceway fault: Point faults in the outer raceway exhibit characteristic
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frequency components in the vibration spectrum, according to (1.1)

fov =

(
Nb

2

)
fr

[
1− bd

dρ
cos β

]
. (1.1)

ii. Inner-raceway fault: Similarly, damage to the inner raceway gives fault-

specific frequency components in the vibration spectrum as

firv =

(
Nb

2

)
fr

[
1 +

bd
dρ

cos β

]
. (1.2)

iii. Rolling element fault: caused due to point defects in the rolling element

giving rise to specific frequency components in the vibration spectrum as

provided by

frv =

(
frdρ
2bd

)[
1−

(
bd
dρ

cos β

)2
]
. (1.3)

iv. Cage fault: the rolling elements are held together in their place by an en-

closed cage-like structure. Any damage to the cage gives specific a frequency

component in the vibration as

fcv =

(
fr
2

)[
1−

(
bd
dρ

cos β

)2
]
, (1.4)

where fov, firv, frv, and fcv are the characteristic vibration fault frequency compo-

nents (in Hz) for the outer raceway, inner raceway, rolling element, cage, respec-

tively. fr is the rotational frequency. Nb, bd, dρ, and β are the number of balls,

ball diameter, ball pitch diameter, and the contact angle between the ball and the

races, respectively. The theoretical fault signatures using stator current can be

obtained from the corresponding vibration signatures as follows

fxi = fo ±mfxv, (1.5)
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where fxi and fxv are the theoretical current and vibration signature of x-type

bearing fault condition. fo is the fundamental supply frequency and m is the set

of natural numbers (m ∈ N.)

1.1.3.2 Stator faults

Stator windings are the most operation critical and fault-prone elements of a SCIM.

The main reason for stator faults can be attributed to the deteriorating insula-

tion of the windings with time. The failure modes associated with winding faults

are short-circuit, open-circuit, stator-core faults [55]. The insulation degradation

causes turn-to-turn defects, and the corresponding stator current spectral signa-

ture is given by

fsi = fo

[
m (1− s)

2p
± k
]
, (1.6)

where m and k are positive integers, m, k ∈ Z+. The inherent ambiguity of (1.6)

and presence of the same signature in case of eccentricity faults limit its use. As

an alternative, the following signature has been used to detect the turn-to-turn

short-circuit faults [56]

fsi = fo

[
mNr (1− s)

2p
± k
]
, (1.7)

where Nr are the number of rotor bars, p is the number of poles of the motor,

m ∈ N, k = 2l + 1 and l ∈ Z+.

1.1.3.3 Broken Rotor Bar fault

Continual running of the motors with unbalanced magnetic pull and inherent

eccentricity leads to cracks at the junction between the end-ring and the rotor

bars. The resultant rotor asymmetry leads to harmonic components around the
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supply frequency [57–59] in the stator current spectrum as

fbi(k) = (1± 2ks)fo, (1.8)

where s is the slip and k ∈ Z. The BRB signature in the vibration spectrum is

given as

fbv(k) = fr ± k(fs − fr)p, (1.9)

where fs = Ns/60 is the synchronous frequency in Hz, with the synchronous speed

Ns in rpm.

1.1.3.4 Eccentricity Faults

Eccentricity faults occur due to the presence of an uneven air-gap between the

stator and the rotor [53]. Depending on the non-uniform air-gap characteristics,

the eccentricity can be classified into different categories, viz; static, dynamic, and

mixed conditions. An eccentric rotor can lead to an unbalanced magnetic pull,

resulting in BRB and stator-rotor rub. The unbalanced magnetic field induces

fault-specific frequency components in the stator current given by [53,60]

fei =

[
(kNr ± nd)

(1− s)
p

± v
]
fo, (1.10)

Where v = ±1,±3, ... are the stator time-harmonic order present in the power

supply driving the motor, Nr is the number of rotor slots, and the value of nd

decides type of eccentricity as

i. Static Eccentricity - The axis of rotation and the rotor axis are same. How-

ever, the rotor axis and stator axis are misaligned. As a result, air-gap is

stationary but non-uniform and it does not rotate with the rotor. Static

eccentricity is caused due to ovality of the stator or poor positioning of the
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rotor. Mathematically nd = 0 in (1.10). Static eccentricity fault is illustrated

in Fig. 1.3(a).

ii. Dynamic Eccentricity - With dynamic eccentricity, the rotor-axis and the

rotational axis do not coincide. However, the rotational axis and the stator

axis are the same, and the minimum air-gap rotates with the rotor. Math-

ematically, frequency components are modeled by putting nd = 1, 2, 3, ... in

(1.10). Dynamic eccentricity is illustrated in Fig. 1.3(b). The causes of dy-

namic eccentricity are due to bent rotor shaft, bearing wear, misalignment,

and mechanical resonance due to shaft speed oscillation.

iii. Mixed Eccentricity - In practice, both the static and dynamic eccentricities

exist together. All the motors studied in this thesis have confirmed this fact.

The static and dynamic eccentricity coexists, leading to the mixed eccentric-

ity condition. In mixed eccentricity, none of the three centers coincides as

illustrated in Fig. 1.3(c).

(a) Static eccentricity (b) Dynamic eccentricity (c) Mixed eccentricity

Figure 1.3: Different types of eccentricity faults
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The mixed eccentricity condition exists inherently in motors. As a result, most

literature uses this mixed eccentricity component to detect the level of eccentricity

present. The mixed eccentricity spectral signature in current is defined by (1.11).

This component has been used in this thesis for speed estimation.

fmi =

∣∣∣∣1± k(1− s)
p

∣∣∣∣ fo. (1.11)

For the vibration signal, the mixed eccentricity component is given by [53]

fmv = 2fo ± fr. (1.12)

This thesis mainly analyzed stator current and motor vibration to detect faults

in SCIM. However, other parameters that are analyzed to assess the fault condition

of a motor are discussed in the subsequent section.

1.1.4 Choice of Signals for Fault Detection

Multiple signals have been used for condition monitoring of SCIMs [54]. A survey

of the keywords from recent publications found stator current to be the most

widely used signal, followed by vibration, as shown in Fig. 1.4. A brief review of
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Figure 1.4: Input parameters used for detecting faults in published works from
2011 to June 2020. Data source: Scopus [1].
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signals that are used as input for fault detection is given below:

i. Current is most popularly used due to its ease of acquisition and low-

cost [61, 62] and conventionally known as motor current signature analysis

(MCSA). Current detect most of the SCIM faults. It requires only nameplate

motor parameters, and the use of clamp-type Hall sensors makes the acquisi-

tion non-invasive. The sensors can be clamped around the supply-lines, and

their proximity to the motors is inconsequential. However, MCSA requires

sophisticated signal processing algorithms for weak fault detection [63], espe-

cially for VFD-motors due to the presence of fault-imitating harmonics [64].

ii. Vibration signals effectively detect early-stage mechanical faults and have

lower spurious harmonic content [65]. Recent use of vibration for fault diag-

nosis can be found in [66–69]. The use of vibration signals for VFD-motor

can be found in [70]. In [71], we have used the inbuilt accelerometer of a

smart phone to measure vibration for fault detection. Effective placement of

vibration sensors is a significant drawbacks along with its cost and fragility.

Also, vibration measurement require elaborate instrumentation.

iii. Magnetic fields for detecting faults of SCIMs require the acquisition of stray

flux [72], air-gap flux [73], and radial flux [74]. Acquisition of flux needs

complex sensor arrangement and fixations for an individual motor. Search

coil-based methods require installing pick-up coils near stator slots and the

motor frame to capture the flux pattern. However, inaccessible motors and

installation of the sensor on existing systems render the use of search coils

infeasible. Locating the optimal position of the search coils for capturing the

fault-modulated signal is substantially challenging. Moreover, the physical

characteristics of the search coil affects the detection procedure.

iv. Supply voltage modulation is also used for the detection of SCIM faults [75].
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However, the use of voltage requires the sensor to be attached to either of

the supply or motor terminals. Also, the acquisition of high-voltage signals

requires a sophisticated data acquisition arrangement, which can be costly

and unsafe.

v. Active-reactive power analysis [76, 77] effective for detecting faults under

time-varying loads. Moreover, power analysis can distinguish oscillations

due load torque from rotor faults. However, power measurement require the

acquisition of voltage, which is disadvantageous.

vi. Acoustic signals were employed by [78,79] to detect faults in SCIMs. Though

potent for a single motor, its use for a multiple motor environment with

several sources of noise is challenging. Specifically, detection and isolation of

faults from numerous sources within an enclosed environment impedes the

use of acoustic sensors.

vii. Thermal field analysis [80], thermal imaging [81], and temperature [82], al-

though used for fault detection in various heavy industries, are not very

popular for SCIMs. Extracting fault-significant information from thermal

images is complicated due to the metal enclosures. Although, It can be used

for detection of the stator and the bearing related failures.

Signals like flux [83] and instantaneous power factor with phase [77] were used

to alleviate the problems faced by MCSA due to load-torque. However, the acquisi-

tion of flux and voltage for calculating power factor are major hurdles. As a result,

BRB indicators, independent of load-torque oscillations, were proposed [84–86].

Few other signals used for SCIM fault detection are rotational speed [87], effi-

ciency [88], slot harmonics [89], torque [60], and low-voltage off-line testing [90].

In [91], data from multiple sensors like current, vibration, acoustic, and voltage

have been integrated using principal components with posterior estimates. The
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quaternion coefficients of tri-axial vibration and stator current have been used in

a decision tree classifier [68]. The use of Sugeno fuzzy integral-based fusion of

current and vibration signals is reported in [92]. The use of data from multiple

combined sensors reduces the classification errors of a fault detector. However,

using multiple expensive sensors for a single motor turns out to be unsuitable for

large-scale implementation.

With the logged motor parameter, we need to select an appropriate method

for detecting the faults. A review of the recent fault diagnostic procedures are

described next.

1.1.5 Review of Existing SCIM Fault Detection and Classification

Algorithms

A condition monitoring system for early detection of SCIM faults can significantly

enhance the operation efficiency of any industry [16, 93]. Different methods have

been proposed in the literature for detecting SCIM faults, as shown in Fig. 1.5.

The information from raw time-domain signals from a faulty motor have almost

imperceptible features to quantify or classify faults. Example stator current raw

signals for different health condition of the SCIM of the experimental setup are

shown in Fig. 1.6 to demonstrate this fact.

The central premise of fault diagnosis is concerned with the estimation of

fault-frequency components and their amplitudes. Spectral estimation using fast

Fourier transform (FFT) [67] and over its envelope [94] has been very accurate in

detecting different faults in SCIMs. High-resolution spectral estimators like MU-

SIC [95,96] and ESPRIT [97,98] have gained prominence over the classical power

spectrum because of their robustness and resolution capacity for detecting faults

under low load conditions. Still, there are concerns over critical issues related to

computational complexity and accurate amplitude estimation of the detected fault
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Figure 1.5: Broad classification of methods for detecting faults in published works
from 2011 to June 2020. Data source: Scopus [1].

components. Parametric spectral estimators for fault diagnosis using maximum

likelihood estimation (MLE) with a given signal model can be found in [99]. Spec-

tral analysis based on total least square methods was developed by [100] for fault

detection.

Time-frequency analysis for variable-load conditions using wavelet packet de-

composition [101], complex-wavelets [102], and tunable Q-factor wavelets [103]

are widely used in literature. The decomposition of the vibration signal into its

intrinsic modes using EMD and subsequent classification of faults by a neural net-

work can be found in [104].The use of complete ensemble EMD to avoid mode

mixing has been demonstrated in [105]. Faults detection under non-stationarity

conditions with variational mode decomposition can be found in [106].

Concentrating the time-frequency energy using phase information with high-

order synchrosqueezing is conducted in [107] for fault detection. The use of over-

complete dictionaries to represent a signal in the sparse domain and retrieving the

frequencies using orthogonal matching pursuit is shown in [108]. A sparsity-based

method with group lasso is presented in [109]. In [110], a low-complexity fault
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detector was designed using the sub-Nyquist strategy. Entropy and mutual infor-

mation features of vibration and support vector machine (SVM) for classification

can be found in [69].

Alternatively, [111] has used linear prediction for recovering fault-specific sig-

nals from the noise to detect point faults and general roughness of bearings. Ad-

vances in machine learning (ML) tools in conjunction with stationary wavelet

extraction, followed by a support vector machine with an artificial immune sys-

tem for classification was shown in [112]. The remaining useful life of bearings

with empirical Bayes was carried out by extracting the features with complete

ensemble EMD [113]. Robust thresholding with historical data of a motor was

demonstrated in [114]. Simultaneous presence of BRB, eccentricity, and speed

oscillations was studied analytically and experimentally in [115]. A method based

on the parametric winding function model using current, rotor speed, and torque

is presented in [116].

The fault frequency amplitude indicates the fault severity [117,118]. However,

subspace-based methods cannot give exact information about the amplitude of the

fault components. Hence, simulated annealing algorithm was used to determine

the correct amplitude and fault severity [98]. In [97, 119], least square is used

for amplitude estimation. However, least squares estimate is same as computing

the DFT for a single component. However, DFT is unsuitable for estimating the

amplitude of closely-spaced sinusoids [120,121]. Moreover, these methods require

extra computational resources for their execution when used in conjunction with

MUSIC and ESPRIT.

Stator current modulation due to partial BRB is weak. The problem is exacer-

bated under light load condition when fault components have low amplitude [122]

and are close to the fundamental [118]. Motors running partial rotor breakages

don’t demonstrate any visible degradation in its performance. However with time
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they result in poor starting performances, excessive vibrations, torque fluctua-

tion, thermal stress, unbalanced magnetic pull leading to multiple broken bars

and stator-rotor rub [59, 123]. Hence, early detection of partial breakages are vi-

tal for effective predictive maintenance. The fundamental frequency needs to be

suppressed without affecting the close fault components. For stationary situa-

tions, a sharp notch filter is used [124]. But variable frequency operation with

load changes requires the central frequency of the notch filter to track the fun-

damental component and its cut-off bandwidth to be adaptive to the slip. For

unsupervised fault detection, a notch filter with such features is unavailable. We

propose an extended Kalman filter-based method for targeted removal of a single

dominant component in Chapter 3. The conditioner tracks and attenuates only

the fundamental component.

Previously, detection of faults in low load condition were successful using

Hilbert modulus with FFT (0.2% slip) [125], Hilbert modulus with ESPRIT (0.33%

slip) [126], Teager-Kaiser energy operator (0.4% slip) [127], Fourier analysis [128]

(1.38% slip), and [129] (0.11% slip). A high initial sampling of 50 kHz for [129]

is disadvantageous for low-cost hardware implementation. Most of the research

has concentrated on detecting single and multiple BRB. Detecting partial BRB

was demonstrated in [58, 59, 130]. However, the detection of partial BRB under

low-slip, for an inverter-fed motor, is yet to be addressed. In this thesis we have

detected a partially broken bar for the inverter-fed SCIM with a 0.2% slip.

The extraction of frequency-based features has been the highlight of SCIM

fault detection. However, the spectral fault features are numerically suppressed

due to the presence of multiple high-magnitude frequency components. For detect-

ing multiple faults and the use of vibration signal, tracking and removing multiple

dominant components was necessitated. Methods like Teager-Kaiser energy opera-

tor [127], and oblique projection [131], have been mainly used for removing single
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components. In Chapter 4 we also propose a method that can estimate, track,

and eliminate multiple high-magnitude components to condition the input signal

and extract the fault features appropriately. The proposed method is adaptive

to variable frequency conditions and can remove targeted dominant components

without affecting the closely-spaced fault components under low-load situations.

Fault detection and classification literature have been predominantly based on

traditional ML approaches, such as neural networks, SVM, random forests, etc.

However, the last five years have seen phenomenal growth in the application of

deep learning (DL) for fault diagnosis and prognosis [132–134]. Transfer learning

[66] has been used to build upon existing networks for accelerating the training

process. Razavi et al. [135] have used oversampling to enhance the class imbalanced

vibration signal training dataset for machine learning. However, the requirement

of large datasets encompassing the overall operating condition of a motor is quite

challenging. Moreover, obtaining fault-data from a running plant for training is

infeasible due to periodic maintenance. It is still an open problem for the DL

models to work when trained using a different motor.

On the other hand, hypothesis testing with generalized likelihood ratio test

(GLRT) [131,136] can only detect the presence or absence of the fault-component.

The presence of an inherent, non-zero, and low-amplitude fault component in a

healthy motor thus results in false alarms. A non-zero magnitude incorporated in

the null hypothesis of the GLRT can reduce the false alarms, but it may result

in a doubly non-central F-distributed test statistic. Alternatively, we present a

simple test based on the minimum distance receiver ( [137], Pg. 112) to avoid

such complex distributions. The test can account for any fault-like magnitude

that might be present in the healthy-motor data. Moreover, unlike DL-based

methods, the test requires only a few healthy data cases to determine a threshold.
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1.2 Motivations of the Thesis

The adaptation of deep learning (DL) architectures and drive towards an industrial

Internet of things have boosted the number of publications in the domain of SCIM

fault diagnosis, as observed in Fig. 1.7. However, physics-based models with the

capacity to detect the weak-fault signatures can circumvent the infeasibility of

obtaining faulty-motor data from a running plant. Some of the existing problems

that motivate this thesis are as follows:

i. Majority of the IF-estimators are indirect methods and the frequency infor-

mation is derived from the time-frequency distribution. A method to directly

estimate multiple IFs of an input can be vital.

ii. Available spectral estimators are computationally complex, and the high-

resolution estimators are incapable of estimating the amplitude. Moreover,

a sequential estimator with data-length independent resolution can be useful

for real-time (RT) implementations.

iii. Detecting multiple faults requires removing multiple dominant components

dependent on the rotational frequency. Conventional notch filters are not vi-

able for use under variable frequency, and low-slip applications as the filters

can suppress the closely-spaced fault components. As evident from the liter-

ature, the other methods are mainly useful for removing single components

or components with harmonic ordering.

iv. Conventional fault-detectors mainly considers the presence or absence of

faults. The GLRT-based methods mainly focus on improving accuracy under

noisy conditions. However, it does not assume the inherent fault component

that can also be present in a healthy-motor.

v. Industries do not tolerate faults, and periodic maintenance is enforced to
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avoid stoppages. As a result, the availability of industrial fault data is scarce

for training. It is still an open problem for data-driven architectures to train

with only available healthy-motor data. Also, algorithms independent of the

motor-specification with high-accuracy detection capacity can be advanta-

geous.

1.3 Objective and Contributions of the Thesis

This thesis aims to detect and estimate sinusoidal parameters under stationary

as well as non-stationary conditions, and apply the estimates for diagnosing weak

faults in SCIMs. The contributions of the thesis are summarized below:

i. The IF estimation of multiple sinusoidal frequency components simultane-

ously using a linearized-observation and constrained Kalman filter.

ii. The IF estimator is enhanced for eliminating the multiple dominant compo-

nents, which leads to efficient signal conditioning.

iii. A Rayleigh-quotient-based spectral estimator is proposed, which has high

estimation accuracy and is computationally efficient. It can also estimate

the amplitude of constituent frequency components efficiently. The spectral

estimator has been used to detect various faults of SCIM using both stator

current and vibration as input.

iv. We propose a minimum-distance-based detector that can incorporate the

inherent fault component information for making the decision.

v. We also propose a Bayesian MAP-based sequential spectral estimator for de-

tecting SCIM faults. The estimator uses a first-order Gauss-Markov process

as the prior distribution. The recursive nature of the spectral estimator has
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enabled its implementation in an IoT-based framework for detecting defects

in multiple motors.

vi. Two embedded and hardware realizations are proposed comprising of a

SIMULINK Real-time (SLRT) based method for single motor and an IoT-

enabled framework for multiple motor health monitoring.

The proposed methods have been tested and validated on a 22-kW SCIM labora-

tory setup described in section 3.5. The use of vibration has also been validated

using the publicly available Case Western Reserve University (CWRU) drive-end,

12 kHz bearing data [15]. The problem statement of the thesis is described in the

next section.

1.4 The Problem Statement

Considering the motivations and objectives of this research, we formulate the

problem statement using a mathematical model where the nth instance of a band-

limited signal x(n), used as an input is given as

x(n) =

q∑
i=1

|Ai| ej(nωi[n]+φi) + v(n), (1.13)

where |Ai|, ωi[n], φi are the individual amplitude, normalized IF, and phase of

the ith component, respectively. ωi[n] = 2πfi[n]/Fs, j =
√
−1, Fs is the sampling

rate (samples/s), and e is the exponential operator, respectively. fi[n] is the IF

(in Hz) of the ith component. v(n) is the additive white Gaussian noise with

zero mean and variance σ2
v , i.e., v[n] ∼ N (0, σ2

v). x(n) consists of q̃ number of

high-amplitude dominating frequency components out of q. We assume that the

frequency has temporal variation. Any diversion otherwise can be accommodated

using a constant frequency, i.e., ωi(n) = ωi.
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The process of fault detection starts with selecting and recording an appropri-

ate signal that should be convenient to acquire and carries vital features of the

fault. The second problem is the pre-conditioning of the input signal to extract

maximum fault information. The preprocessing is accomplished by the targeted

elimination of q̃ dominant components. The variable frequency drives (VFD) ag-

gravates the problem as the supply frequency can vary with time. After signal

conditioning, the third problem is to extract vital features that carry information

about the faults. For the model described by (1.13), feature extraction mainly

involves the estimation of frequency and amplitude of the remaining (q − q̃) com-

ponents. Lastly, based on the extracted features, fault detection and identification

is carried out.

1.5 Organization of the Thesis

The thesis is organized as follows:

Chapter 1: This chapter provides the background, motivation, and objective of

this thesis to detect and estimate low-amplitude frequency components and

their utility in diagnosing SCIM faults.

Chapter 2: Proposes a generalized framework for RT tracking of multiple time-

varying sinusoidal frequencies of a non-stationary signal.

Chapter 3: Introduces the Rayleigh-quotient-based spectral estimator and uses it

for detecting partially broken rotor bar faults using stator current. This

chapter uses an EKF-based method for eliminating the single dominant sup-

ply frequency component from the stator current. However, the necessity of

eliminating multiple dominant components from vibration signals to detect

different faults takes us to the next chapter. The SCIM experimental setup
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is also described in this chapter.

Chapter 4: This chapter has modified the IF-estimator of Chapter 2 to elimi-

nate multiple dominant components from an input signal. A minimum

distance-based detector is proposed for generalized fault detection. Using

the Rayleigh-quotient-based spectral estimator, we show the overall frame-

work’s utility for detecting multiple SCIM faults using vibration signatures.

Chapter 5: Proposed a Bayesian MAP-based sequential spectral estimator for de-

tecting SCIM faults using a single-phase stator current input. The method

has been used for presenting an online IoT-based framework for detecting

defects in multiple induction motors.

Chapter 6: Describes two hardware and embedded implementations for detecting

SCIM faults. The first system discussed is a SLRT-based hardware for de-

tecting faults of single motor. Whereas, the second application shows the

use of an IoT-based framework for detecting faults in a factory-setup with

multiple SCIMs.

Chapter 7: This chapter concludes the thesis and provides a peek into future

research directions.

A pictorial representation of different parts of the thesis and the chapter depen-

dencies are provided in Fig. 1.8.

1.6 Conclusions

This chapter provides an overview of the existing estimators of frequency under

stationary and non-stationary conditions. This is followed by a description of

different faults in SCIMS, their signatures, and methods for detecting the faults.
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The survey of existing IF-estimators have shown the scarcity of direct estima-

tors of frequency. Most methods estimate the time-frequency distribution before

finding the frequency. On the other hand, high-resolutions spectral estimators

are incapable of estimating the amplitude of constituent components and require

model-order information. Fault detection of SCIMs can be classified into physics-

based and data-driven methods. The physics-based models mainly estimate fault-

characteristic frequency components and spectral-leakage is a major hurdle in the

detectability of faults. Notch-filters can only remove single dominant component

or ordered-harmonics. Alternatively, data-driven methods need difficult-to-obtain

fault-condition data. As a consequence, targeted removal of dominant components

in conjunction with high-resolution spectral estimators can detect weak faults un-

der a variety of conditions. The chapter is concluded by the motivation, objective,

and contributions of this dissertation along-with its organization.
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Figure 1.6: Raw time domain stator current for different running and fault condi-
tions of the motor.
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C H A P T E R 2

Direct Estimation of Multiple

Time-varying Frequencies of

Non-stationary Signals

This chapter proposes a generalized framework for real-time (RT) tracking of

multiple time-varying sinusoidal frequencies of a non-stationary signal. The non-

stationary signal is modeled as a TVAR process. A non-linear state-space model is

formed to truly represent the TVAR process, considering the frequencies as state

variables. We have defined the observation and its Jacobian by the modified roots

of a polynomial formed by the state variables. Numerical derivatives have been

substituted by the analytic form of the Jacobian matrix for improved numerical

accuracy. A constrained Kalman filter is then applied for RT tracking of the fre-

quencies. We have compared the statistical performance of the proposed method

with other established methods using Monte-Carlo simulations. The proposed
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method is found to have superior error performance under different conditions

of chirp-rate, resolution, noise variance, and abrupt changes in frequency. Ad-

ditionally, we have taken the bat echolocation signal, gravitational waves of a

binary black hole merger, and abrupt change in mains frequency supplied to a

three-phase squirrel cage induction motor as practical examples to demonstrate

the applicability and efficacy of the proposed method in real-world scenarios.

2.1 Contributions of the Chapter

In this chapter, we present a method for sequential estimation of multiple time-

varying frequency components simultaneously. For this, we will model the non-

stationary signal as a TVAR process. The model can incorporate information

about multiple components. Additionally, through statistical results, the perfor-

mance of the proposed method for different chirp-rates will be evaluated. We

will derive the analytic form of the non-linear observation matrix and apply a

constrained Kalman filter to estimate the multiple time-varying frequencies. For

a non-stationary signal with slowly varying parameters, it is assumed that the

TVAR coefficients are constant at each instant [138]. Existing literature has esti-

mated the TVAR model parameters using Bayesian maximum a posteriori (MAP)

estimate [5] when the prior information about the parameters is known. Alter-

natively, maximum likelihood estimation (MLE) [4] can be used when the prior

information is unavailable. Additionally, it will be shown that unlike conventional

methods, over-estimation of the model order is not required, and satisfactory res-

olution can be achieved with correct knowledge about the model order. It will be

shown that the proposed sequential estimator is capable of estimating the frequen-

cies of closely-spaced components. Also, the error-performance and the recovery

time during an abrupt change of frequency of the IF estimator will be shown to be
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superior. Three real-world examples for IF estimation of gravitational waves, bat

echolocation signal, and stator current of an induction motor are used to demon-

strate the practical application of the method. The novelty of the present work

can be enumerated as

1. Majority of the literature uses a time-frequency (TF) representation to find

the energy distribution and then maximizes the distribution for IF estima-

tion. The methods are non-sequential and require a batch of windowed data

to find the TF distribution. On the other hand, sequential estimation using a

linearized Kalman filter has mainly focused on estimating a single dominant

frequency or its harmonics. This chapter evaluates the frequency of multiple

time-varying components using a linearized and constrained Kalman filter.

The efficacy of the method has been established with various Monte-Carlo

(MC) simulations, and its comparison with established methods like SST,

wavelet-SST (WSST), RM, and S-transform.

2. We have avoided numerical derivatives by deriving the analytic closed-form

of the observation matrix and its Jacobian for multiple frequencies leading

to higher accuracy.

3. We have also used a constrained optimization to find the optimum gain of

the Kalman filter for resolving the inherent phase unwrapping problem of

frequency estimates.

Outline: We have structured the chapter as follows: Section 2.2 describes

the signal model and defines the problem. Section 2.3 proposes the frequency

estimation methodology for the complex exponential model and extends it to a

two-component real signal, which will be used for evaluation and analysis. Subse-

quently, we demonstrate the efficacy of the proposed method with simulated and
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real-world data, along with performance comparisons with existing state-of-the-art

frequency estimation methods in Section 2.4. Section 2.5 concludes the chapter.

2.2 The Time-varying Autoregressive Process

A p-component signal x[n] with individual components x̃i[n] is represented as

x[n] =

p∑
i=1

x̃i[n] + v[n], (2.1)

where

x̃i[n] = |Ai|ej(nωi[n]+φi), (2.2)

and ωi[n], |Ai|, φi are the instantaneous normalized frequency, amplitude, and

phase of the ith component, respectively. ωi[n] = 2πfi[n]/Fs, and j =
√
−1.

fi[n] and Fs are the ith instantaneous signal frequency (Hz) and sampling rate

(samples/s), respectively. v[n] is the additive white Gaussian noise with zero mean

and variance R = σ2
v , i.e., v[n] ∼ N (0, σ2

v). We want to estimate ωi[n] of (2.2) for

every i, sequentially. p is defined as the number of components and is assumed

to be known. Alternatively, [4, 5] have estimated the number of components of a

time-varying process.

Assimilating the initial phase into the amplitude of (2.2), we have x̃i[n] =

Aie
jnωi[n] with Ai = |Ai| ejφi . We model x̃i[n] as an AR process for slowly-varying

parameters by assuming a frozen state with constant coefficients (i.e., ωi[n] ≈ ωi)

for a short duration [138] as

x̃i[n] = ejωix̃i[n− 1]. (2.3)
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The z-transform of (2.3) gives

(
1− ejωiz−1

)
X̃i(z) = 0, (2.4)

where the z-transform of x̃i(n) is given by X̃i(z). We define the polynomial A(z)

having roots ejωi as

A(z) =

p∏
i=1

(
1− ejωiz−1

)
. (2.5)

From (2.4), we see that A(z)X̃i(z) = 0. Defining x̃[n] =
p∑
i=1

x̃i[n], with its z-

transform given as X̃(z) =
p∑
i=1

X̃i(z), we can prove that A(z)X̃(z) = 0. Therefore,

X̃(z)

p∏
i=1

(
1− ejωiz−1

)
= 0; (2.6)

hence,

X̃(z)



1− z−1
p∑
i=1

ejωi + z−2
p∑
i=1

p∑
j′=1,i 6=j′

ejωiejωj′

−z−3
p∑
i=1

p∑
j′=1

p∑
k=1,i 6=j′ 6=k

ejωiejωj′ejωk+

· · · (−1)p+1z−p
p∏
i=1

ejωi


= 0. (2.7)

The inverse z-transform of (2.7), gives the observation model as a non-linear func-

tion of the frequencies as x̃[n] = h(θ[n]), and θ[n] is the state vector defined

as

θ[n] = [ω1[n], ω2[n], · · · , ωp[n]]T , 0 ≤ ωi[n] < 2π,

where (·)T denotes the transpose operation. A signal with multiple time-varying

frequency components θ[n] can be represented by a pth order TVAR process [139]
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with time-varying parameters ai[n] as

x[n] =

p∑
i=1

ai[n]x[n− i] + v[n]. (2.8)

Using x[n] = x̃[n] + v[n], and putting the value of x̃[n], we get

x[n] = h(θ[n]) + v[n]. (2.9)

Comparing (2.8) and (2.9), we get h (θ[n]) as

h (θ[n]) =


ejω1[n] + ejω2[n] + · · ·+ ejωp[n]

−ejω1[n]ejω2[n] − · · · − ejωp−1[n]ejωp[n]

...

(−1)p+1 (ejω1[n]ejω2[n] · · · ejωp[n]
)



T

x[n− 1], (2.10)

where x[n] =
[
x[n] x[n− 1] · · · x[n− p+ 1]

]T
.Algorithm 1 constructs h (θ[n])

online using x[n− 1], θ[n], and p.

Algorithm 1 Construction of h (θ[n])

Input: θ[n] = [ω1[n], . . . , ωp[n]]T , x[n− 1], p
Output: h (θ[n])

1: Form the polynomial roots by the vector r = exp(jθ[n])
2: Find the coefficients of the polynomial with roots r. MATLAB uses the function

‘poly.’ b = poly(r) and b ∈ C(p+1).
3: h (θ[n]) = [b]Ti=2,3,...,p+1 x[n− 1], where [b]Ti=2,3,...,p+1 is the transpose of b with the

first element removed.

2.3 Time-varying Frequency Estimation

The time-varying parameters of (2.8) can be estimated using the Kalman filter.

The estimated parameters then can be used to estimate the power spectrum as
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given by (2.11).

Px(ω, n) = σ̂2
v

/∣∣∣∣∣
p∑

k=1

âi[n]e−jkω

∣∣∣∣∣
2

, (2.11)

where âi[n] and σ̂2
v are the estimated time-varying parameters and observation

noise variance, respectively. However, our aim is to estimate the frequency directly.

Direct estimation requires solving the non-linear equation of (2.7).

2.3.1 Direct Frequency Estimation

In this work, we directly estimate the time-varying sinusoidal frequencies using

the observation model given by (2.9). A first-order Gauss-Markov process define

the state update as

θ[n] = θ[n− 1] + u[n], (2.12)

where u[n] is zero-mean white Gaussian with covariance Q, and Q = σ2
uI, and I

is a (p× p) identity matrix. Therefore, u[n] ∼ N (0, σ2
uI), and 0 is a vector with p

zeros. Using a first-order Taylor expansion and neglecting the higher-order terms,

we have h(θ[n]) as

h(θ[n]) = h(θ̂[n|n− 1]) +

[
∂h(θ[n])

∂(θ[n])

]
θ[n]=θ̂[n|n−1]

(
θ[n]− θ̂[n|n− 1]

)
, (2.13)

where θ̂[n|m] = E(θ[n]|x[m], x[m−1], . . . , x[m−p+1]) and E(·) is the expectation

operator. Now substituting the value of h(θ[n]) from (2.13) into (2.9), we obtain

the linear observation model as

x[n] = h(θ̂[n|n− 1]) +H [n]
(
θ[n]− θ̂[n|n− 1]

)
+ v[n],
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where H [n] = ∂h(θ[n])
∂(θ[n])

, evaluated at θ[n] = θ̂[n|n− 1], and can be decomposed

(proof in Appendix B) as

H [n] = (φWx[n− 1])T , (2.14)

with φ = j diag
(
ejω1[n] · · · ejωp[n]

)
, and

W =



1 −
p∑
i=2

ejωi[n]
p∑
i=2

p∑
j′=2,i 6=j′

ejωi[n]ejωj′ [n] · · · (−1)p+1
p∏
i=2

ejωi[n]

1 −
p∑

i=1,i 6=2

ejωi[n]
p∑
i=1

p∑
j′=1,i 6=j′ 6=2

ejωi[n]ejωj′ [n] · · · (−1)p+1
p∏

i=1,i 6=2

ejωi[n]

· · · · ·

1 −
p−1∑
i=1

ejωi[n]
p−1∑
i=1

p−1∑
j′=1,i 6=j′

ejωi[n]ejωj′ [n] · · · (−1)p+1
p−1∏
i=1

ejωi[n]


.

The dimension of the matrices are given as φ ∈ Cp×p,W ∈ Cp×p, andHT [n] ∈ Cp.

We use Algorithm 2 to construct W . Using the values of h (θ[n]), H [n], and the

Algorithm 2 Construction of W

Input: θ[n] = [ω1[n], ω2[n], · · · , ωp[n]]T , p
Output: W

1: for all i such that 1 ≤ i ≤ p do
2: θ[n] ← θ̃[n] = [· · · , ωi−1[n], ωi+1[n], · · ·]T
3: Form roots as r̃ = exp(jθ̃[n])
4: W (i, :) = poly(r̃)
5: end for

constrained Kalman filter [140] approach, we propose Algorithm 3 for estimating

the IFs of multiple components. The optimization finds the optimal Kalman gain

so that the frequency estimate of the complex exponential is restricted within 0
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to 2π. The Kalman gain is given as

K̂ = argmin
K

Trace
[
(I −KH [n])P [n|n− 1](I −KH [n])H +KRKH

]
subject to : 0 < θ̂i[n|n− 1] +Ki

(
x[n]− h(θ̂[n|n− 1])

)
< 2π, ∀i

(2.15)

in which K, R, P are the Kalman gain, observation error covariance, and state

error covariance, respectively. Ki is the Kalman gain for the state θi, and i =

1, 2, . . . , p. I is an p× p identity matrix and (·)H denotes the conjugate transpose

operation. The quadratic convex optimization problem with affine constraints

was solved using fmincon program of MATLAB. It can also be solved using a

semidefinite problem solver SDPT3 from MATLAB [141].

Algorithm 3 Sequential estimation of multiple frequencies

Input: θ̂[n− 1], x[n], P [n− 1], Q, R.
Output: θ̂[n], P [n].

1: for all n such that n > p do
2: Prediction of state

θ̂[n|n− 1] = θ̂[n− 1]

3: Prediction of Minimum Mean Square Error

P [n|n− 1] = P [n− 1] +Q

4: Evaluation of Kalman Gain

K = P [n|n− 1]HT [n]
{
H[n]P [n|n− 1]HT [n] +R

}−1

5: Correction
θ̂[n] = θ̂[n|n− 1] +K

{
x[n]− h(θ̂[n|n− 1])

}
6: If (θ̂i[n] < 0) or (θ̂i[n] > 2π)
7: Re-evaluate the Kalman gain with (2.15) and go to step 5.
8: End If
9: Minimum Mean Square Error

P [n] = I −KH[n]P [n|n− 1]

10: end for
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2.3.2 Example: Synthetic Signal Consisting of Two Sinusoids with

Time-varying Frequencies

For real sinusoids, two parameters define a single component. The TVAR model

for time-varying real sinusoid with two components (p = 2) is given by (2.16)

x[n] =

2p∑
i=1

ai[n]x[n− i] + v[n], (2.16)

For real sinusoids, the polynomial of (2.5) is modified as

A(z) =
p∏
i=1

(1− e−jωiz−1) (1− ejωiz−1)

=
p∏
i=1

(1− 2z−1 cosωi + z−2) .
(2.17)

Therefore,

h(θ[n]) = 2 (cosω1 + cosω2)x[n− 1]− (2 + 4 cosω1 cosω2)x[n− 2]

+2 (cosω1 + cosω2)x[n− 3]− x[n− 4].
(2.18)

From (2.18), we see that the observation requires four parameters for a model with

two time-varying real sinusoids. The Jacobian of (2.18) is given by

H [n] =
∂h(θ[n])

∂(θ[n])
=

[
∂h(θ[n])

∂ω1[n]

∂h(θ[n])

∂ω2[n]

]
. (2.19)

Solving (2.19) we have H [n] as

H [n]=


 −2 sinω1[n] 4 cosω2[n] sinω1[n] −2 sinω1[n]

−2 sinω2[n] 4 cosω1[n] sinω2[n] −2 sinω2[n]



x[n− 1]

x[n− 2]

x[n− 3]



T

.
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The construction of a generalized model for multiple time-varying sinusoids is

quite challenging. However, naturally occurring signals are real and sinusoidal.

Hence, for real-world applications, an analytic signal is first obtained using Hilbert

transformation. The tools developed for complex exponential are then applied to

estimate the IF. The bat-echolocation problem is one such example, as will be

shown in Section 2.4.3.

2.4 Simulation Results, Real-world Examples, and Dis-

cussions

We model signals having time-varying frequencies ωi[n] to simulate various sce-

narios for testing our algorithm as

ωi[n] =
2π

Fs

(
αi +

βin

Fs

)
, (2.20)

where αi, βi are the initial frequency (Hz) and chirp-rate, respectively. Fs = 200

samples/s. The initial values of R, Q, and P for the simulations are determined

using the Kalman filter-based particle swarm optimization [142].

2.4.1 General Frequency Estimation Result

For the first simulation, we consider a signal with two distant time-varying fre-

quency components (α1 = 10, α2 = 20, β1 = β2 = 1) having a constant 10 Hz

difference. The true and estimated frequency components are shown in Figure

2.1.

Next, we consider two closely-spaced components ω1[n] and ω2[n] (α1 = 10, α2 =

11, β1 = β2 = 1) with a constant 1 Hz difference between them as illustrated in

Fig. 2.2. The SNR of individual components for both test cases is chosen as 40
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Figure 2.1: Frequency estimate of well-separated sinusoids with a constant 10 Hz
difference, ∆ω = 0.1π radians/sample, and SNR = 40 dB
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Figure 2.2: Frequency estimate of closely spaced sinusoids with constant 1 Hz
difference, ∆ω = 0.01π radians/sample, and SNR = 40 dB.

dB.

In Fig. 2.3, estimation of two quadratic components with different chirp-rates

are demonstrated. The normalized frequencies of the two components are ω1[n] =

0.01π(10 + n2/F 2
s ) and ω2[n] = 0.01π(20 + 3n2/F 2

s ) and the SNR is taken as 40

dB.

A compelling case with two overlapping components is shown in Fig. 2.4. The

first frequency component ω1[n] is linear (α1 = 12, β1 = 2). Whereas, the second

component ω2[n] = 0.01π(10+0.4n2/F 2
s ) is a quadratic function of time. The true

components has cross-over at 5.45 seconds. It is observed that the frequency esti-

mates do not intersect, as shown in the inset of Fig. 2.4. However, the individual

trajectory information is preserved after the crossover, as shown in Fig. 2.4. The
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Figure 2.3: Frequency estimate of non-linear components with nonlinear frequen-
cies as f1(t) = 10 + t2 and f2(t) = 20 + 3t2, with SNR = 40 dB.
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Figure 2.4: Frequency estimate of closely-spaced mixed-function sinusoids with
initial 1 Hz difference. f1(t) = 11 + 2t, f2(t) = 10 + 0.4t2.

experiment indicates good performance for components that are closely-spaced and

have quadratic IF. The frequency estimate for an abrupt change in frequency of a

single component is demonstrated in Fig. 2.5(a), where ω1[n] = 0.01π(10+2n/Fs)

was changed to ω1[n] = 0.01π(30 + 2(n − 1000)/Fs) at n = 1000. This resulted

in a sharp change of ω1[n] from 0.2π to 0.3π at 5s. In Fig. 2.5(b), one fixed fre-

quency component, and another having an abrupt change in frequency are tracked

together. It is observed that a sharp change in one component affects the other

component’s estimation briefly.
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Figure 2.5: Frequency estimate with the proposed method with an abrupt change
at 5 seconds and 60 dB SNR.

2.4.2 Statistical Evaluation of the Frequency Estimates

Different statistical measures are adopted to determine the performance of the IF

estimator. A comparison with four established methods for IF estimation are also

carried out. The compared methods are Gaussian-windowed STFT, Morlet-WSST

[33], Fourier-SST [28], and reassignment method (RM) [28]. The STFT, RM, and

SST used a Gaussian window with σ = 0.025. The IF of the methods compared

are extracted from the TF-distribution by extracting the ridge as proposed in [28].

For WSST, the ridge is extracted with the method given in [33]. Normalized

mean-squared error (NMSE) is used to compare the methods in terms of SNR,

chirp-rate, resolution, and the performance under an abrupt change of frequency.

The NMSE is defined as

NMSE =
1

ML

M∑
m=1

L−1∑
n=0

(
ω[n]− ω̂[n]

ω[n]

)2

, (2.21)

where ω[n] and ω̂[n] are the true and estimated IF at nth instant, L is the length of

the sequence, and M is the total number of MC simulation. 1000 MC simulations

for different noise realizations are used to evaluate the NMSE.

Figure 2.6 compares the performance of all the methods under different SNR
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Figure 2.6: NMSE for frequency estimation at different SNR levels with 1000
Monte-Carlo simulations for each SNR.

levels. The NMSE of the proposed method for estimating a single component

(α1 = 10, β1 = 2) is high when the noise is high. However, with increasing SNR,

the NMSE of the proposed method decreases drastically compared to the other

methods. It is observed that the NMSE of the other methods converges asymp-

totically to particular error variances. When the SNR increases, the proposed

estimator starts giving more priority to the measurement than the model. As

a result, the NMSE decreases with increasing SNR when compared to the other

methods. The performance of the estimator under low-SNR can be improved by

online estimation of the noise parameters using expectation maximization [43].

The validity of IF estimators revolve around the assumption that the frequency

components vary slowly with time. In the next simulation, we investigate the

NMSE for signals having different chirp-rates. As observed in Fig. 2.7, the pro-

posed method has an NMSE, which is quite less for a constant component. The

NMSE increases slightly with increasing chirp-rate. However, it is lower than the

other methods within the chirp-rate range β1 ∈ [0, 2]. For the simulation, we have

considered a single frequency component with different chirp-rates (α1 = 10, and

β1 was varied from 0 to 2 Hz/s). The NMSE for each chirp-rate is calculated for

1000 trials with different realization of noise having a constant SNR of 60 dB.
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Figure 2.7: Variation of NMSE versus the chirp-rate with 1000 Monte-Carlo sim-
ulations.

For multiple components, it is essential to evaluate performance of the esti-

mator when the components are close to each other. Figure 2.8 shows how the

frequency difference between the two components in a signal affects the estimation

accuracy. Two linear frequencies with different spacing are used for the simula-

tion. The spacing between the components is kept constant for 1000 trials with

different noise realizations, and the NMSE is assessed. The SNR of each compo-

nent is fixed at 60 dB. The NMSE is evaluated between the true and estimated

mean-frequency instead of the individual components. Due to better localization

of energy in the time-frequency plane, RM, SST, and WSST perform better than

STFT, as observed in Fig. 2.8. However, the error of the proposed method is

lower than the others, and it could separate the closely-spaced components even

though the estimation was carried out recursively. As the separation increases,

the NMSE of the proposed method also decreases, as anticipated. Although, no

such trend could be verified for the other methods.

The NMSE between the true and estimated frequency for an abrupt change

of frequency at t = 5 s (n = 1000) is shown in Fig. 2.9. In this case, the NMSE

is evaluated and plotted for each time instance with 1000 MC simulations. It is

observed that the recovery time for the proposed method is less than the other
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Figure 2.8: NMSE versus variation of frequency difference with 1000 Monte-Carlo
simulation (SNR = 60 dB).
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Figure 2.9: Frequency estimate with the proposed method with an abrupt change
at 5 seconds for two components. SNR = 60 dB.

methods. Also, the NMSE of the proposed method decreases after the abrupt

change. A sudden change in frequency resets the Kalman gain. The Kalman gain

settling to lower values results in a lower correction. Once reset, the higher penalty

has led to a further drop in the NMSE. It is observed that the proposed method

has the lowest recovery time during an abrupt change in terms of the error, and

the overall NMSE is also lower than the other methods. The temporal localization

of the proposed method method under abrupt change is best compared to the

others as observed in Fig. 2.9.

We can summarize that the proposed method has superior error performance

for variable chirp-rate, resolution, and abrupt changes in frequency. The perfor-
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mance under high-SNR is also better than the state-of-the-art. However, online

estimation of the noise parameters can aid in improving the low-SNR error per-

formance. We use three examples to demonstrate the use of the method under

unknown noise variances, as described in the subsequent sub-section.

2.4.3 Frequency Estimation of Real-world Examples

Three practical test cases are used to demonstrate the use of the proposed method.

The first example is the echolocation problem, where the ultrasonic sound emitted

by a big brown bat (Eptesicus fuscus) [143, 144] is analyzed. The short-duration

signal is considered a multicomponent cubic-phase signal acquired with a sampling

interval of 7 µs. The analytic signal is derived from the real signal using the

Hilbert transform and is modeled by three components (p = 3). The frequency

information obtained from the signal is shown in Fig. 2.10. For comparison, TF-

distribution using WSST has been plotted in the same figure. When compared

to WSST in Fig. 2.10, it is observed that the proposed method has successfully

detected and estimated all three components with certainty. Whereas WSST has

estimated only two components. Besides, the proposed method can track time-

varying frequencies through the TVAR model parameters. However, in WSST, no

such assumptions are made, and the frequency estimation is solely based on the

segment of data used.

The second test case is taken to analyze gravitational waves originating due

to a distant binary black hole merger. The signal from the laser interferometer

gravitational-wave observatory (LIGO) detector at Hanford, Washington, is used

to analyze the GW150914 event [145]. In this case, the original signal has been

decimated by a factor of eight before using the IF estimators. A real mono-

component model with two parameters is used for the proposed method. The

observation of gravitational waves consists of three phases [146]. Gravitational
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Figure 2.10: Time-frequency analysis of the echolocation pulse emitted by a big
brown bat.
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Figure 2.11: Frequency estimation for the binary black hole collision event
GW150914 observed at Hanford, Washington (H1).

waves in the initial stage are emitted due to the gradual loss of orbital energy

between two spinning black holes. This phase is known as the inspiral. During

the inspiral-phase, the frequency is almost chirp-like. This information is best

relayed by the proposed method. The other methods compared here exudes an

oscillatory behavior in the frequency, as seen in Fig. 10. Eventually, during the

merger-phase, the orbits shrink, and the black holes collide with speeds close to

the speed of light, resulting in a Kerr black hole. During the merger, due to

an increased acceleration between the colliding black holes, space-time fabric is

distorted sharply. Theoretically, this results in a sharp change in the IF. A similar

observation can be seen in Fig. 2.11 after 0.15 s.

A third case-study estimates the supply frequency of a variable frequency
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driven three-phase squirrel cage induction motor. This experiment finds the per-

formance of the proposed method under abrupt changes. The VFD accelerated

the motor from 0 Hz to 50 Hz in a span of 0.2 s. The 0.2 s limit was reached

due to the physical and electrical constraints of the VFD for its safe operation.

A single-phase stator current was used for this demonstration. The details of

the experimental setup are presented in Section 3.5. A sampling frequency of 20

ksamples/s is used, and the data is analyzed in MATLAB. The VFD requiring a

settling-time to stabilize into the final frequency is evident from the jittery time

samples after 6 s, as shown in the bottom of Fig. 2.12. The 0.2 s transition band

and the non-linear dynamics of the VFD are best captured with the proposed

method, as is evident from the top image of Fig. 2.12. The inset figure shows the

temporal resolution of the proposed method around 5.7 s using a log-scale. STFT,

SST, and RM have also estimated the transition of the IF. However, an initial

bias is observed in the estimate of SST and STFT when the signal is not present.

Minor values in the region before six seconds and presence of noise in the input

signal have resulted a bias in the ridge detection algorithm for SST and STFT.
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Figure 2.12: Estimating abrupt change in fundamental supply frequency using
stator current of a squirrel cage induction motor. The temporal resolution during
the initial stages of the abrupt change is depicted in the inset in log-scale.
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2.5 Conclusions

This chapter has derived the analytic form of a linearized observation model and

used a constrained Kalman filter for direct estimation of multiple time-varying

frequencies. The method developed is sequential and gives an estimate of all the

components of a multi-component signal simultaneously. We have replaced the dy-

namic linearization process using structured matrices in analytic closed-form for

better accuracy. We have formed the matrices by using the coefficients of a polyno-

mial with modified roots. Modern Eigen-based methods can accurately determine

the coefficients of large polynomials [147]. From the simulation results, we can

conclude that the estimator is suitable for estimating time-varying closely spaced

frequency components or components having sharp changes in the frequency. The

recovery time in case of the abrupt transition is better than other state-of-the-art

methods. We have also observed that the technique outperforms other methods

while estimating the frequency with a higher chirp-rate. The performance of the

proposed method under high-SNR is proficient. However, its performance in low-

SNR condition needs improvement. As a future research direction, we have to

estimate the state and observation noise parameters in each time instance, when

the present state is unknown for better model fitting and improved low-SNR per-

formance.

Furthermore, use of time-varying ARMA model for low-SNR IF estimation

shall be investigated. Also, the use of higher-order Gauss-Markov processes for

state propagation can help in defining complex physical processes. We have taken

three real-world examples to demonstrate the applicability and superiority of the

proposed method under unknown SNR levels. Our approach has the advantage of

using a model in addition to the data for better performance. Incorporating an

accurate model in the case of the binary black hole merger can give better insight

into the process that has taken place a long time ago.
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C H A P T E R 3

Rayleigh Quotient Spectrum for

Online Detection of Partial Broken

Bar in Induction Motors

In this chapter, a fast and accurate spectral estimator based on the theory of

Rayleigh quotient is proposed. The Rayleigh quotient spectral (RQS) estimator

can precisely determine the relative amplitude of fault side-bands and has low

complexity compared to available high-resolution subspace-based spectral estima-

tors. Detection of low-amplitude fault components has been further improved

by removing the single high-amplitude fundamental frequency using an extended-

Kalman-based signal conditioner. The slip of the motor is estimated from only

a single phase stator current for accurate localization of the fault component.

The evaluation of threshold and fault diagnosis are carried out under different

load and fault severity conditions using empirical cumulative distribution func-

tion. The complete fault detection algorithm has been used for detecting partial
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broken rotor bar (BRB) of an inverter-fed squirrel cage induction motor under

light load conditions. This system with minor modifications can detect any fault

that affects the stator current.

3.1 Contribution of the Chapter

The major contributions of this chapter can be enumerated by (a) the development

of a novel spectral estimator that can

1. estimate the location of fault frequency components with very high accu-

racy in a noisy environment and has lower computational complexity than

MUSIC,

2. estimate the magnitude of fault frequencies accurately, unlike subspace-based

methods like MUSIC and ESPRIT,

3. avoid spurious peaks as it do not require any information on model-order,

thus, decreasing the chance of false alarms and missed detections,

(b) An elegant fault detection algorithm is developed using the novel spectral

estimator having the following attributes:

1. can detect a single BRB fault with different levels of damage under low-slip.

The lowest slip for the medium-sized motor to detect a partially broken bar

is 0.2% under 1.9% of the rated load,

2. a novel EKF-based signal conditioner can estimate and remove the funda-

mental supply frequency of the input. This conditioning has improved the

detectability of closely spaced fault frequencies due to partial BRB under

low slip. Moreover, being a time-domain based sequential technique, it can

also be used for non-stationary applications.
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Outline: The chapter is structured as follows: Section 3.2 describes the pro-

posed spectral estimator and its statistical evaluation, followed by a discussion

on the statistical resolution of the method in section 3.3. Section 3.4 offers the

fault detection scheme and a method for single dominant component suppression

and slip estimation followed by fault detection results in section 3.6. Section 3.7

summarizes and concludes the chapter.

3.2 The Proposed Spectral Estimator

The signal model of (1.13) with time-invariant frequency is given as

x(n) =

q∑
i=1

|Ai| ej(nωi+φi) + v(n). (3.1)

The autocorrelation matrix (Rx) of size L, is constructed from the data matrix

(X) of same size [120] without any interleaved samples, as given by (3.2).

X =


x(0) · · · x(L− 1)

· · · · ·

x(L− 1) · · · x(2L− 2)

 (3.2)

Assuming the process to be ergodic, Rx can be estimated by

R̂x =
1

L
{XH ·X} (3.3)

3.2.1 Theoretical Background of the Spectral Estimator

For a symmetric matrix A, with known eigenvector v, corresponding eigenvalue

(λ) can be approximated by using the theory of Rayleigh quotients ( [148], Pg.
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301-304) as

λ̂ =
vHAv

vHv
(3.4)

For the present problem, R̂x is symmetric and its eigenvectors are related to the

independent frequency components present in the signal. The vector w(ω) of (3.5)

will become an eigenvector of R̂x if a sinusoid of frequency ω is present ( [149], Pg.

452) in the signal. Sweeping ω between 0 to 2π will give a peak of ĥ(ω) (3.6) when

ω matches the frequency of a sinusoid present in the signal. The peak ĥ(ω) is the

eigenvalue corresponding to the eigenvector w(ω) and is related to the amplitude

of the sinusoid present in the signal.

w(ω) =
[
ejω·0 ejω · · · ejω·(L−1)

]H
(3.5)

and w(ω)Hw(ω) = L, and ω ∈ [0, 2π].

ĥ(ω) =
w(ω)HR̂xw(ω)

w(ω)Hw(ω)
(3.6)

3.2.2 Amplitude Estimation

Putting the estimate of (3.3) in (3.6) gives

ĥ(ω) =
1

L2

[
(Xw (ω))H · (Xw (ω))

]
. (3.7)

The product Xw (ω) of (3.7) can be found as

Xw(ω) =


x(0) · · · x(L− 1)

· · · · ·

x(L− 1) · · · x(2L− 2)




e−jω·0

...

e−jω(L−1)


=

[
L−1∑
i=0

x(i)e−jωi · · ·
L−1∑
i=0

x(i+ L− 1)e−jωi
]T (3.8)
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Now, we define that

Xq(ω) =
L−1∑
r=0

x(r + q)e−jωr, (3.9)

and using this in (3.8), it is obtained that

Xw(ω) =
[
X0(ω) · · · XL−1(ω)

]T
(3.10)

putting the value of (3.10) in (3.7) gives

ĥ(ω) =
1

L2

L−1∑
i=0

|Xi(ω)|2 (3.11)

Now taking the square of the absolute value on both sides in (3.9) and putting it

in (3.11) gives

ĥ(ω) =
1

L2

L−1∑
i=0

∣∣∣∣∣
L−1∑
v=0

x(v + i)e−jωv

∣∣∣∣∣
2

(3.12)

In the next section, a simplified way to implement this method in matrix form

will be discussed. Now a single sinusoid at ωk with spectral peak magnitude ĥ(ωk)

without any noise can be modeled using (3.1) as

x[n] = Ake
j(ωkn+φk) (3.13)

Putting x[n] in (3.12) gives

ĥ(ωk) = 1
L2

L−1∑
i=0

∣∣∣∣L−1∑
v=0

Ake
jωk(v+i)ejφke−jωkv

∣∣∣∣2
= 1

L2

L−1∑
i=0

∣∣∣∣Akejωkiejφk
L−1∑
v=0

1

∣∣∣∣2
=

A2
kL

2

L2

L−1∑
i=0

1

= LA2
k

(3.14)
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From (3.14), the amplitude ak is estimated by Âk as

Âk =

√
ĥ(ωk)

/
L (3.15)

Fig. 3.1 shows the amplitude estimation efficacy of the RQS estimator in estimat-

ing the amplitude of closely spaced sinusoids. Two sinusoids at 49.8 Hz and 50

Hz with equal amplitude have been used as input for this experiment. Different

SNR has been achieved by varying the sinusoidal amplitude and keeping the noise

variance constant. The peak has been detected from the spectrum, and its ampli-

tude is evaluated by (3.15). It is observed that the amplitude estimation error is

very low, even in low SNR. Hence, the spectral estimator can be used to quantify

the severity of faults accurately under light loads when the fault components are

weak and close to the fundamental.
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Figure 3.1: Estimation of amplitude, L = 2000, Fs = 200Hz.

The performance of the RQS estimator is evaluated in terms of its execution

time, frequency estimation accuracy, and resolvability of closely spaced sinusoids.

A comparison between the the proposed method, MUSIC, and DFT for estimating

the spectrum is shown in Fig. 3.2. The RQS estimator doesn’t require windowing

to avoid spectral leakage. Whereas DFT without windowing gives rise to false

peaks, as shown in Fig. 3.2a. This can be disadvantageous for motor fault diag-

nosis. A Chebyshev window [124] was used for DFT to reduce the false peaks as

in Fig. 3.2b. Also, it was found that the presence of another sinusoid hampers the
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3.2 The Proposed Spectral Estimator

frequency estimates of the DFT, as shown in Fig. 3.3a. For this simulation, two

sinusoids (50Hz, 53 Hz) with unity amplitude were used. The frequency estimate

for a sinusoid in the presence of other sinusoids using DFT can be improved by

using a window over the input samples, as shown in Fig. 3.3b. However, on the

application of a window, the location error estimates of DFT is found to be infe-

rior compared to the proposed method. The performance of the proposed method

against MUSIC is identical.
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Figure 3.2: Comparison of spectral estimators for possible spectral leakages re-
sulting in false peaks. The frequency f1 = 50Hz was used for this simulation,
N = 399.
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Figure 3.3: Comparison of spectral estimators for peak frequency estimation in
the presence of another sinusoid. The frequency f1 = 50 Hz and f2 = 53 Hz was
used for this simulation, N = 399.

The mean execution time was evaluated over 1000 trials for each N for the

proposed spectral estimator, MUSIC, and DFT. It is evident from Fig. 3.4 that
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the proposed spectral estimator has a lower time complexity than MUSIC but is

slightly slower than DFT.
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Figure 3.4: Mean execution time for DFT, MUSIC, and the proposed method over
1000 trials for each data length (N).

The accuracy of peak-frequency estimation and the robustness of the proposed

method has been compared with DFT and MUSIC. In Fig. 3.5a, the MSE between

the input sinusoidal frequency and the location of the peak obtained from the

respective spectral estimator is evaluated by 100 trials for each N . It is inferred

that MUSIC and the proposed spectral estimator have slightly higher accuracy for

similar data length when compared to DFT with windowed data. In Fig. 3.5b,

MSE is evaluated with different SNR levels for 100 trials each. It is found that the

performance of the proposed spectral estimator in a noisy environment is quite

robust and is similar to that of MUSIC and is better than DFT with windowed

data. A single sinusoid of 50.1111 Hz and unity amplitude has been used for both

experiments. Fs = 200 Hz was used.

The proposed method is most suitable for fault detection as it is fast and can

estimate the fault frequency and its amplitude accurately without any information

about the number of sinusoids. The simulations were conducted with the offline

system described in Appendix A.4. The Cramer-Rao lower bound (CRLB) for

single-frequency estimation (derivation in Appendix C) is given as

var(f) ≥ 3σ2
vF

2
s

π2A2
1N(N − 1)(2N − 1)

(3.16)

60



3.3 Optimal Choice of Data Length with Probability of Resolution

Data length (N)

600 800 1000 1200 1400 1600

M
S

E
 (

d
B

)

-60

-50

-40

-30
CRLB

Proposed method

Music

Windowed DFT

(a) Frequency estimation error for different
values of N .

Signal to Noise Ratio (dB)

-5 0 5 10 15 20

M
S

E
 (

d
B

)

-60

-50

-40

-30 CRLB

Proposed Method

MUSIC

Windowed DFT

(b) Frequency estimation error for different
SNR levels, N = 599.

Figure 3.5: Evaluation of frequency estimate error for different data length and
SNR levels.

3.3 Optimal Choice of Data Length with Probability

of Resolution

For accurately resolving two closely spaced sinusoids, with minimum execution

time, an optimal length of data (N) needs to be set for any spectral estimator

[150]. The optimum value of N for the proposed spectral estimator is determined

statistically with probability of resolution. The decision statistic, γ as in (3.17)

decides whether two known frequency components (f1 and f2) are resolved with a

particular estimator [151].

γ(f 1, f2) , h(fm)− 1

2
{h(f1) + h(f2)} < 0, (3.17)

where fm is the mean of f1 and f2, and h(fi) is the magnitude of the fi
th component

obtained from the spectrum. The probability of resolution for various data lengths

with three levels of SNR is shown in Fig. 3.6a. Two sinusoids of unity amplitude

and a frequency difference of 1 Hz are considered. For each N , 100 trials have been

conducted to find whether the sinusoids are resolved. It is evident from the figure
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that N = 400 is sufficient to resolve two sinusoids of equal magnitude having a

frequency difference of 1 Hz and SNR > 0 dB with 100% probability. The required

minimum value of N decreases with decreasing noise.

From Fig. 3.6b, it is observed that the classical periodogram without win-

dowing has a higher resolution than the proposed method. The high-resolution

is mainly because the proposed spectral estimation action is based on an average

spectrum obtained from each column of the data matrix. In contrast, the classical

periodogram uses a single vector of data-length that is approximately twice that

of each column of the proposed method’s data-matrix. The use of windowing is

necessary for fault detection to avoid spectral leakage and false alarms while using

a classical periodogram. However, using windowed data, the classical periodogram

has a lower resolution shown in Fig. 3.6c compared to the proposed method. In

this thesis, the value of L is fixed at 2000 (N = 3999) to detect weak faults under

low-slip.

3.4 The Proposed Fault Detection Scheme

A schematic block diagram of the proposed fault detector is shown in Fig. 3.7.

The signal conditioner estimates and removes the fundamental frequency compo-

nent from the input. The spectrum of the conditioned signal is used for finding

the slip and the fault specific frequency components. The slip information is used

to construct the fault search band. Fault specific frequencies and their peak mag-

nitudes are evaluated in the search band. The amplitude estimator uses (3.15) to

determines the peak amplitude and sends them to the decision block for threshold

comparisons. The major subsystems other than the spectral estimator involved in

the fault detection scheme are discussed in the following section.
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Figure 3.6: Probability of resolution versus data length (N) for different levels of
SNR (Fs = 200 Hz).

3.4.1 Estimation of Fundamental Frequency and Signal Condi-

tioning with EKF

The pioneering work of Routray et al. [44] can efficiently estimate and track the

fundamental frequency of single-phase current using EKF. In this chapter, the

algorithm was modified to estimate the fundamental signal yo(k) in addition to the

fundamental frequency fo(k). The estimated fundamental signal is then subtracted

from the measured stator current y(k) to generate the conditioned signal ε(k),

which is void of the supply component. Fig. 3.8 illustrates the method used in

this chapter. The state vector is given by (3.18).

x̂s(k) = [2 cos(ω) ŷ(k − 1) ŷ(k − 2)]T (3.18)
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Figure 3.7: The complete SCIM fault detection scheme.

Detailed implementation and analysis of EKF can be found in [44].

State space formulation required for EKF:

EKF

: state vector

: stator current

: fundamental 

component of stator current

ε : stator current without 

fundamental

+

-

Figure 3.8: The signal conditioning and fundamental frequency estimator. x̂s1(k)
is the first element of the estimated state vector.

This method, though simple, is very useful in eliminating the fundamental

component. The spectrum of the stator current without input signal conditioning

is shown in Fig. 3.9a. It is observed in Fig. 3.9b that, with EKF signal con-

ditioning, the amplitude of the fundamental component is effectively attenuated.

Consequently, the spectral leakage due to the fundamental is reduced, and the

detectability of low amplitude side-bands close to the fundamental frequency is

enhanced. The spectra were obtained using the proposed spectral estimator.
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Figure 3.9: Effect of signal conditioning with EKF (the motor running with 33%
load and 0.9% slip under single BRB fault)

3.4.2 Estimation of Slip

Fault frequency components related to BRB are motor slip dependent. The value

of slip is used to form the fault frequency search bands for the spectral estima-

tor. The motor slip can be measured using a speed sensor or can be estimated

using observer-based soft-sensing techniques [152], and slot-harmonic-based [153]

methods. The observer methods require the acquisition of all the phase voltages

and currents. It also requires accurate estimate of certain motor parameters that

are difficult to determine and may change with time. The slot harmonic based

method requires a high sampling rate, which has its own disadvantage. Most

SCIMs carry an inherent low-frequency mixed eccentricity (1.11) component due

to machine saturation [153]. The SCIMs used for this work also exhibited the

mixed eccentricity component which is reproduced below for convenience

fmi =

∣∣∣∣1± k(1− s)
p

∣∣∣∣ fo
This component was present even when all precautions were taken during the

fault incorporation and motor assembling process. Using the lower component of

(1.11), and putting k = 1 (the principal frequency component) and p = 2 (number
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of pole-pairs for experimental motor under test), the slip is obtained as

s =
2fmi − fo

fo
(3.19)

The proposed spectral estimator (Section 3.2) is used for finding fmi in the fre-

quency band of 0.5fo to 0.6fo, with Fs = 200 samples/s. This band is obtained by

evaluating fmi from (3.19) with the slip ranging from 0% to 20% for the four-pole

machine. The highest peak obtained in this band is the mixed eccentricity compo-

nent given by fmi. The mean of the relative square error for the speed estimator

was found to be 1.908E-07. The error was evaluated from full BRB fault dataset

(refer Table 3.1), which consisted of 72 datasets for different loads. The error was

calculated from the measurement obtained from the proximity speed sensor (see

Section 3.5).

3.5 The Experimental Setup

A schematic diagram of the experimental setup is illustrated in Fig. 3.10. The

experimental setup consists of a 22 kW, four-pole, and three-phase SCIM manu-

factured by ABB. Power to the motor was supplied with VFD from ABB (model:

ACS550-U1-045A-4). We have used multiple sensors to record different signals of

the motor, as shown in Fig. 3.10. Complete specifications of the experimental

setup are provided in Appendix A.1. A three-phase tacho-generator was coupled

to a generator for speed estimation. A photograph of the motor-generator setup is

shown in Fig. 3.11. Variable loading was achieved through rheostatic loads, with a

24-kW separately excited DC generator coupled to the motor shown in Fig. 3.11.
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Figure 3.10: The schematic diagram of the experimental setup
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Figure 3.11: A photograph of the motor-generator experimental setup

3.5.1 Signal Acquisition

A 16-channel Yokogawa 850v data acquisition system (see Appendix A.5 for de-

tails) simultaneously recorded multiple signals with a sampling frequency of 20

kHz. The inbuilt analog low-pass filter of the data acquisition system was config-

ured with a 4-kHz cutoff to avoid aliasing. For steady-state analysis, the motor was

run for three minutes before every acquisition. For the SCIM, we have recorded

two phases of the stator current and three phase-voltages. For acquiring the sta-

tor current, we have used Fluke i1000 clamp-type current transducer. The phase

voltages were tapped using Fluke voltage probes. We have illustrated only one-
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D
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Figure 3.12: The different sensors used for signal acquisition. Clockwise from top
(A) current sensor, (B) voltage sensor, (C) acoustic sensor, (D) vibration sensor.

phase voltage acquisition in Fig. 3.10 for clarity. We have recorded the vibration

of the SCIM using two tri-axial vibration sensors (Brüel & Kjær, model: 4506).

One sensor was mounted on the driving end, while the other was mounted in the

middle of the motor. Data from the radially oriented axis of the driving-end sensor

is only used in this thesis for uniformity. The rotational speed of the motor was

measured using a proximity-based sensor mounted atop the coupling, as shown

in Fig. 3.11. We have also recorded the acoustic emission using (Brüel & Kjær,

model: 2579661) unidirectional microphone. The photograph of the sensors used

in the experimental setup is shown in Fig. 3.12. The offline analysis was carried out

with MATLAB. The specification of the computational platform is given in Ap-

pendix A.4. Other than the SCIM signatures, we have recorded load current and

armature voltage of the DC generator and two phase-voltage of the three-phase

tacho-generator.
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Table 3.1: Description of different BRB faults used for the experiments

Fault healthy BRB partial BRB half BRB full BRB

Drill Depth 0 mm 4 mm 16 mm 34 mm

(a) Half BRB fault (b) Full BRB fault

Figure 3.13: Photograph of different levels of BRB fault

3.5.2 Incorporation of Faults

For simulating BRB, a single rotor was damaged at different depth-levels, as given

in Table 3.1 and shown in Fig. 3.13 for the experiment. For damaging the bearing,

single 2-mm holes, as shown in Fig. 3.14, were machined into the outer raceway,

the inner raceway, and the rolling element of the driving-end bearing using spark

electric discharge machining. Figure 3.15 shows the machining process and one of

the copper electrodes that was used for machining the holes in different parts of

the bearing. Additionally, we have used the CWRU dataset [15] for validating

the vibration-based algorithm for bearing fault detection. The specification of

the bearing used in the CWRU dataset is given in Appendix A.3. Characteristic

primary fault frequencies in terms of fr for both the tested bearings are given in

Table 3.2.
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C
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Figure 3.14: Different kind of bearing faults (A) Inner raceway fault, (B) Rolling
element and cage fault, (C) Outer race fault.

Figure 3.15: Electrical discharge machining underway for creating outer raceway
fault and one of the sample copper electrodes used.

Table 3.2: Bearing vibration fault frequencies (multiple of fr in Hz)

Bearing Outer Inner Rolling Cage

SKF 6310-2ZR (Lab) 3.0476 4.9524 3.9619 0.3810

SKF 6205-2RS (CWRU) 3.5848 5.4152 4.7134 0.3938
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3.6 Experimental Results and Discussion

Experiments for BRB and its analyses can be classified into two categories. With

the first set of analysis, detectability with partial damage to a single bar with

different slips is illustrated. For these experiments, frequency spectra with the

proposed method and MUSIC are compared. For uniform plots, each spectrum has

been normalized by its fundamental peak value obtained after EKF-conditioning.
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Figure 3.16: Normalized stator current spectrum of a healthy motor with 1.9%
load and 0.2% slip using MUSIC and the proposed spectral estimator.

In Fig. 3.16, the experiment results with 1.9% load and a 0.2% slip for healthy

BRB are shown. In Fig. 3.17, results with 1.9% load and 0.2% slip for partial

BRB fault is presented. In this case, the upper and lower side-bands at (1± 2s)fo

appears in the spectrum, and the difference between healthy and faulty condition

is quite comprehensive.

Fig. 3.18 illustrates the partial BRB fault with a 0.33% slip. Spectral signature

with increased fault severity in the form of the half BRB is shown in Fig. 3.19.

The motor has been operating with 0.33% slip on the application of 9% load. It

is observed that MUSIC doesn’t give rise to fault peaks, which may be due to

improper estimation of the number of sinusoids. The effectiveness of the method

for the detection of BRB fault with high load is demonstrated in Fig. 3.20.

The peaks obtained by MUSIC don’t provide any information about the fault
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Figure 3.17: Normalized stator current spectrum of the motor with partial BRB
running with 1.9% load and 0.2% slip using MUSIC and the proposed spectral
estimator.
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Figure 3.18: Normalized spectrum of stator current with partial BRB running
with 13% load and 0.46% slip.

severity. It is also to be noted that the location of fault frequencies obtained

by both the spectral estimators are equivalent. This experiment demonstrates

the effectiveness and reliability of the proposed spectral estimator compared with

MUSIC for detecting weak BRB faults.

The second set of analysis deals with different BRB fault levels on the magni-

tude spectra, with similar loading in all the cases. The spectrum for this set has

also been normalized with the magnitude of the attenuated fundamental compo-

nent. It is observed in Fig. 3.21 that, with increasing BRB severity, the magnitude

of the fault component also increases. The fault frequency peaks for different cases

don’t exactly match due to slight variations in each case’s supply frequency. For

partial and half BRB cases, fault components with k = 4, and k = 5 in (1.8) are

exceptionally prominent for the 50 Hz supply. Fig. 3.22 shows the spectrum of
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Figure 3.19: Motor with half BRB with 9% load and 0.33% slip.
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Figure 3.20: Motor with full BRB operating under a high load of 71% and 2.06%
slip.

the stator current obtained by the proposed spectral estimator for 40 Hz supply

frequency and 0.33% slip for all the cases. Fig. 3.23 shows the spectrum with 30

Hz supply frequency and 0.45% slip for all the fault cases. With 40 Hz and 30

Hz supply, the fault components with k = 1 are most prominent, and the peak

magnitude increase with increasing fault severity.
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Figure 3.21: Spectrum of stator current with different BRB fault levels for 50 Hz
supply (0.26% slip) using the proposed spectral estimator.

From the above results, it is clear that the side-band peaks normalized by the
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Figure 3.22: Spectrum of stator current with different BRB fault levels for 40 Hz
supply (0.33% slip) using the proposed spectral estimator.
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Figure 3.23: Spectrum of stator current with different BRB fault levels for 30 Hz
supply (0.45% slip) using the proposed spectral estimator.

fundamental frequency magnitude can distinguish between the healthy and the

faulty cases. The normalized magnitude (Y ) is the ratio of the magnitude of the

fault specific magnitude (ĥfault) to the magnitude of the fundamental component

(ĥfo) obtained after suppression given by

Y =
ĥfault

ĥfo
(3.20)

The dispersed nature of the peak magnitudes makes it prudent to employ

a probabilistic measure to fix a threshold. Hence, the cumulative distribution

function (CDF) of the normalized side-bands has been computed as plotted in

Fig. 3.24. The distribution function is given by ( [149], Pg. 61)

FY (α) = P(Y ≤ α) (3.21)
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Table 3.3: Statistics for BRB fault

Threshold Value Missed Detection False Alarm

20.30 27.38% 0.00%

17.65 23.50% 1.09%

14.16 19.35% 8.70%

10.03 13.00% 23.00%

where Y is a random variable and α is any number. In the present scenario, Y

represents the normalized peak magnitude of a particular dataset (healthy/faulty)

and α is the chosen threshold. An overlap between the CDF magnitudes corre-

sponding to the faulty and the healthy cases have been observed. Therefore, an

optimal threshold is found to represent the acceptable tradeoff between the missed

detection and false alarm rates. Any normalized peak value above α is considered

as faulty. The fraction of data on the right side of the threshold in Fig. 3.24 for

the healthy CDF representing the false-alarm (FA) is given by

FA = 1− P(Yhealthy ≤ α), (3.22)

while the fraction of data on the left side of the threshold for faulty CDF repre-

senting the missed detection (MD) is given by

MD = P(Yfaulty ≤ α), (3.23)

where Yhealthy and Yfaulty are the normalized peak magnitudes of healthy and faulty

data, respectively. A range of suitable threshold from Fig. 3.24, are given in Table

3.3. It is observed that a normalized side-band peak magnitude greater than 20.3

can be considered as faulty without any false alarm.
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Figure 3.24: Empirical CDF of normalized peak magnitude (in log scale) for
healthy and faulty cases (50 Hz data), with all the fault-motor cases augmented
in a single vector.

3.7 Conclusions

This chapter presented the development of an online SCIM fault detection system

based on the spectral analysis of a single-phase stator current. The theory of

Rayleigh quotient was utilized for designing the proposed spectral estimator. The

performance of the spectral estimator for detecting frequency components is better

than DFT and is similar to that of MUSIC. Additionally, it can estimate the

amplitude of the fault components and is also faster, unlike MUSIC. An EKF-

based signal conditioner was used for removing single dominant component. The

conditioner has enhanced the detection of partial BRB fault under ultra-low load

conditions. The system is adaptive to changes in supply frequency and loads for

a particular frame of data but is unsuitable for detecting defects under transient

and non-stationary conditions.

The proposed fault detection system was validated by extensive experiments

with different fault levels of BRB fault under various loading conditions. Empirical

CDF was adopted to determine a threshold required for the assessment of the

faults. Detection of low-amplitude closely-spaced sinusoids makes this method a
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powerful tool for detecting weak failure modes such as partial BRB in low-load

applications.
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C H A P T E R 4

Minimum Distance-based Detection

of Incipient Induction Motor Faults

using Rayleigh Quotient Spectrum of

Conditioned Vibration Signal

This chapter proposes a single vibration sensor-based method for detecting in-

cipient faults in SCIMs. We consider defects in different parts of the bearing (inner

raceway, outer raceway, cage train, and rolling element) and a single bar of the

rotor. The vibration signal is dominated by the fundamental rotational frequency

and its harmonics. The dominant components result in numerical errors while esti-

mating the relatively indistinct fault-specific spectral features. In this chapter, we

precondition the vibration signal by suppressing multiple dominant components

using an extended Kalman filter-based method. The suppression of the signifi-
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cant components reduces the spectral leakage, exposes minute fault components,

and improves the overall amplitude estimation. Subsequently, we estimate the

fault frequency and amplitude using the Rayleigh-quotient-based spectral estima-

tor outlined in Chapter 3. The thresholds for fault detection are determined from

a small number of healthy data. An adaptive minimum distance-based detector

is then used for hypothesis testing. The proposed test improves detection and

reduces false alarms under noisy conditions. We test the complete algorithm using

data from a 22-kW SCIM lab-setup (see Section 3.5) and the publicly available

data from Case Western Reserve University [15].

4.1 Contribution of the Chapter

In our previous works, we have used stator current to detect a single BRB using

MUSIC [95] and RQS estimator [16]. The advantages of the latter in terms of

reduced-complexity, accuracy in frequency estimation, and amplitude estimation

make it suitable for analyzing vibration signals. Chapter 3 uses a Kalman filter-

based method to track and remove a single dominant frequency. However, for

detecting multiple faults using vibration, we need to track and remove multiple

dominant components. This chapter proposes a method that can identify weak-

faults due to incipient anomalies in the bearings and rotor bars using single-axis

vibration data. The novel contributions of this chapter can be outlined as follows.

1. The use of single-axis vibration data to identify weak faults under various

loading conditions in SCIMs.

2. For conditioning the vibration signal, we improvise our recently proposed

Kalman-based method (chapter 2, [93]) to track and remove multiple domi-

nating components of rotational frequency and its harmonics. The condition-

ing reduces the spectral leakage and improves the detectability of incipient
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4.2 Preconditioning of the Vibration Signal

faults. The proposed method can also be employed under non-stationary

conditions when the dominant frequencies vary with time.

3. A minimum distance detector [137] has been constructed to detect faults

and incorporate information about the inherent fault component, which can

be present even when the motor is healthy. Unlike the recently used data-

driven techniques, the proposed method only requires a few healthy-motor

instances of data for threshold selection.

The proposed method has been tested and validated on a 22-kW SCIM laboratory

setup (described in section 3.5), as well as with the publicly available CWRU

drive-end, 12 kHz bearing data [15].

Outline: We have structured the chapter as follows: Section 4.2 extends the

IF estimator of chapter 2 for eliminating multiple dominant components of the

vibration signal. Section 4.3 proposes the minimum distance detector for con-

sidering inherent fault component magnitude. The implementation of the overall

vibration-based fault detection algorithm is provided in section 4.4. The experi-

mental results and performance comparison, and a discussion on the results, are

given in section 4.5. Section 4.6 summarizes and concludes the chapter.

4.2 Preconditioning of the Vibration Signal

In chapter 2, we have tracked and estimated the instantaneous frequencies of a

non-stationary signal. In this section, we modify the method to estimate the con-

tribution of multiple dominant components in the signal and use the information

to eliminate them for reducing the effect of spectral leakage. We assume that the

dominating ith component without the noise of (1.13) is represented by x̃i[n] as

x̃i[n] = |Ai|ej(nωi[n]+φi). (4.1)
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We will estimate ωi[n] and x̃i[n] for multiple dominant components for each in-

stance of n, and then use the estimated x̃i[n] for its elimination from the input

signal x[n]. We define q̃ as the number of dominating components, assumed to

be a known quantity. We presume that magnitude of the dominating q̃ compo-

nents are significantly higher than the other (q− q̃) components, i.e., |Ai| � |Aj|,

∀ {(i, j) : i ∈ [1, q̃], j ∈ [q̃ + 1, q]}. With complex amplitude representation (4.1),

we have x̃i[n] = Aie
jnωi[n] with Ai = |Ai| ejφi . Now, following the derivation given

in chapter 2 (2.3 - 2.9) and replacing p = q̃, we have from (2.9)

x[n] = h(θ[n]) + v[n].

The conditioned signal x̂0[n] is obtained by eliminating the estimated h(θ̂[n])

(2.10) from the input x[n] as

x̂0[n] = x[n]− h(θ̂[n]). (4.2)

We directly estimate the sinusoidal frequencies using the observation model

(2.9) and then eliminate the frequency component from the input signal. The

modified algorithm for the suppression of dominant frequencies is given in Algo-

rithm 4

An example test case to compare the spectrum of the raw and conditioned vi-

bration signal obtained from one of the faulty motor with BRB is shown Fig. 4.1.

We observe in Fig. 4.1(a) that the spectral leakage from the dominant rotational

frequency and its harmonics has obscured the fault components. The proposed sig-

nal conditioning has attenuated the dominant components and reduced the spec-

tral leakage. As a result, the fault component peaks have conspicuously emerged

in Fig. 4.1(b). The RQS estimator, as discussed in Chapter 3, has been used to

plot Fig. 4.1.
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Algorithm 4 Elimination of dominant frequencies

Input: θ̂[n− 1], x[n], P [n− 1], Q, R.
Output: θ̂[n], P [n], x̂0[n].

1: for all n such that n > q̃ do
2: Prediction of state

θ̂[n|n− 1] = θ̂[n− 1]

3: Prediction of minimum mean squared error

P [n|n− 1] = P [n− 1] +Q

4: Evaluation of Kalman gain

K = P [n|n− 1]HT [n]
{
H[n]P [n|n− 1]HT [n] +R

}−1

5: Correction
θ̂[n] = θ̂[n|n− 1] +K

{
x[n]− h(θ̂[n|n− 1])

}
6: If (θ̂i[n] < 0) or (θ̂i[n] > 2π)
7: Re-evaluate Kalman gain with (2.15) and go to step 5.
8: End If
9: Signal conditioning

x̂0[n] = x[n]− h(θ̂[n])

10: Minimum mean squared error

P [n] = I −KH[n]P [n|n− 1]

11: end for

4.3 Minimum Distance Based Detection

To design the test, we use the real part of (1.13) as

x(n) = A cos(ωn+ φ) + v(n). (4.3)
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Figure 4.1: Spectrum analysis of motor vibration (a) before and (b) after signal
conditioning.

The fault frequency (ω) is assumed to be time-invariant, and the hypothesis testing

(4.4) is formulated under the assumption that v(n) ∼ N (0, σ2) as

H0 : x(n) = A cos(ωn+ φ) + v(n); A < γ,

H1 : x(n) = A cos(ωn+ φ) + v(n); A ≥ γ,
(4.4)

where γ is the tunable threshold that can be learned from the healthy data. The

fault component with noise is represented as

x(n) = α1 cos(ωn) + α2 sin(ωn) + v(n),

where A =
√
α2

1 + α2
2, and φ = arctan (−α2/α1) . Collating N data points, the

observation x is represented as

x = Mα+ v,
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where M =

 1 · · · cos(N − 1)ω

0 · · · sin(N − 1)ω

T , and α =

 α1

α2

 . With C = (2πσ2)
−N/2

,

the probability density function of x is given by

p
(
x;α, σ2

)
= C exp

[
−(x−Mα)T (x−Mα) /2σ2

]
.

4.3.1 Parameter Estimates under ith Hypothesis

Under the hypotheses, the parameter estimation turns out to be a constrained

optimization problem. The maximum likelihood estimate of the parameters un-

der each hypothesis is obtained by solving the following optimizations using the

interior-point algorithm:

H0 :
α̂0 = minimize : (x−Mα)T (x−Mα)

subject to : αTα < γ2,
(4.5)

H1 :
α̂1 = minimize : (x−Mα)T (x−Mα)

subject to : αTα ≥ γ2.
(4.6)

4.3.2 Minimum Distance Detector

The minimum distance detector chooses the hypothesis that has the higher con-

ditional likelihood p (x; α̂i, σ̂
2
i |Hi) [137],

p
(
x; α̂i, σ̂

2
i |Hi

)
= C exp

[
−(x−Mα̂i)

T (x−Mα̂i)

2σ̂2
i

]
,

Alternatively, the hypothesisHi is chosen, if theD2
i (x) = (x−Mα̂i)

T (x−Mα̂i)

under that hypothesis is minimum. Neglecting the xTx term as it is same under
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both the hypothesis, we have

D2
i (x) = −2xTMα̂i + α̂Ti M

TMα̂i. (4.7)

Rearranging the terms of (4.7), we define the test statistic for Hi as

Ti(x) = xTMα̂i −
1

2
α̂Ti M

TMα̂i. (4.8)

The individual hypotheses are obtained by using the value of αi from (4.5) and

(4.6). The hypothesis Hi is selected for which the Ti(x) is maximum. The total

probability of error Pe is

Pe = P(H1|H0)P(H0) + P(H0|H1)P(H1),

where P(Hi|Hj) is the conditional probability of Hi given Hj. We assign the prior

probability p(Hi) = 0.5 for both the hypotheses. Therefore,

Pe = 0.5P(T1(x) > T0(x)|H0) + 0.5P(T0(x) > T1(x)|H1)

= 0.5P(T1(x)− T0(x) > 0|H0) + 0.5P(T1(x)− T0(x) < 0|H1). (4.9)

The aggregate error of classification is given by Pe. Also, P(Hi) can be updated

with the history of the motor.

4.4 Implementation of the Algorithm

The implementation of the fault detection system, as illustrated in Fig. 4.2, is

described as follows:

1. The acquired vibration signal, x(n), is down-sampled for adequate frequency
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resolution with appropriate anti-alias filtering. The data is then sent to the

signal conditioner. In this work, the sampling rate is fixed to 400 samples/s

for all the data.

2. The signal conditioner estimates the fundamental rotational frequency (fr)

and removes the dominant components. The conditioned vibration signal

x̂0(n) is then stored in a buffer.

3. The specification of the motor, bearings, and value of the fr is used to find

the theoretical fault frequency.

4. A small band is searched around the central frequency by the RQS estimator

(Chapter 3), and the peak (ω) is detected.

5. The threshold (γ), buffered x̂0(n), and ω are then sent for hypothesis testing,

and the presence of fault is decided by the test statistic T0(x) and T1(x).

4.5 Experimental Results

This spectral plots of this chapter are normalized by the rotational frequency

magnitude and are then scaled between zero and one for uniformity. The RQS

estimator (chapter 3) is used for obtaining the spectrum.

4.5.1 Inner Raceway Fault Detection

We have used the damaged inner raceway for multiple experiments using the lab-

setup to compare the faulty motor signature with a healthy motor. Figure 4.3

shows the spectrum of the conditioned vibration signal from the single axis (driving

end) sensor with two different load conditions. With increased loading, identifying

the inner-raceway fault component has improved considerably as the number of
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Figure 4.2: Implementation of the complete fault detection algorithm.

spurious peaks has reduced. The fault component for the CWRU data is quite

prominent for all the cases. Figure 4.4 gives the vibration spectrum with a 0.007-

inch (0.1778 mm) fault for no-load and 3-HP load, respectively. The vibration

spectrum for increased severity with the 0.028-inch (0.7112 mm) fault in the inner-

raceway for two load conditions is shown in Fig. 4.5. For the CWRU data, the

fault components are considerably prominent for all the cases, and they match

with the theoretical fault component.

4.5.2 Outer Raceway Fault Detection

In the case of an outer-raceway fault, we have carried out the same experiment

set with a hole drilled into the outer raceway. Proper care was taken so as not

to damage the rolling element. Figure 4.6 shows the conditioned vibration spec-

trum of the experimental setup for two load cases. With increased loading, few
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Figure 4.3: Spectrum of the conditioned vibration signal obtained from the lab-
setup, with inner-race fault for different load levels.
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Figure 4.4: Vibration spectrum of CWRU data for detecting a 0.007-inch inner
raceway fault for two load levels.

additional components appear in the vicinity of the fault-component. However,

the outer-raceway fault component magnitude normalized by the magnitude of

the rotation frequency component is prominent in both cases. Accurate frequency

estimation by the proposed method reduces the chances of misclassification due

to spurious peaks. We have applied the same set of analyses to the CWRU data

for detecting the outer raceway fault. We have selected two load cases for the

two levels of fault severity. The spectrum with the 0.007-inch defect for the two

loads is shown in Fig. 4.7. The fault components are pronounced, and they match
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Figure 4.5: Vibration spectrum of CWRU data for detecting a damaged inner
raceway with increased severity of 0.028-inch fault for two load cases.
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Figure 4.6: Spectrum of the conditioned vibration signal obtained from the lab-
setup, with an outer raceway fault for different load levels.

with the theoretical component. The vibration spectrum with increased severity

of the 0.021-inch (0.5334 mm) fault is shown in Fig. 4.8. The healthy data exhibits

minor frequency components in the observed band for the higher load. However,

the magnitudes are low, and they do not match the theoretical fault frequency.

When compared with the healthy cases, it can be summarized that the proposed

method is successful in separating the faulty cases from healthy ones.
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Figure 4.7: Vibration spectrum of CWRU data for detecting an incipient 0.007-
inch outer raceway fault.
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Figure 4.8: Vibration spectrum of CWRU data for detecting a 0.021-inch outer
raceway fault.

4.5.3 Rolling Element Fault Detection

The rolling element fault signature of bearing is presented in Fig. 4.9. The de-

tectability with the lab-setup bearing is quite challenging due to the high mag-

nitude frequency component in the vicinity of the theoretical fault component.

The fault component is further subdued when the load is increased. However, a

narrow search band and an accurate frequency estimate can correctly identify the

fault-component.

For the small-sized CWRU bearings, the visibility of the fault-frequency com-
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Figure 4.9: Rolling element fault vibration spectrum for different load scenarios,
obtained from the lab-setup.

ponent is quite pronounced. Figure 4.10 shows the vibration spectrum of the

CWRU data with a 0.007-inch defect for two load cases, whereas Fig. 4.11 shows

the spectrum for a 0.028-inch fault in the rolling element. It is seen in Fig. 4.11(b)

that multiple frequency components appear in the healthy motor spectrum for

the high load. However, misclassification due to its presence is minimal as the

components do not match with the theoretical fault component.
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Figure 4.10: Vibration spectrum of CWRU data for detecting an incipient 0.007-
inch rolling element fault for different loads.
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Figure 4.11: Vibration spectrum of CWRU data for detecting a severe 0.028-inch
rolling element fault for two load levels.

4.5.4 Cage Fault Detection

The cage of the rolling element was inadvertently damaged while simulating the

rolling element fault. Specific frequency regions were searched, and it was found in

Fig. 4.12 that the proposed method has successfully detected the fault-component.

With increased loading, the fault component has become more pronounced and

can be easily distinguished.
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Figure 4.12: Cage fault spectrum extracted from the vibration signal using the
lab-setup.

Similar results were also observed with the CWRU data. However, there was

no information regarding the cage fault defect in CWRU data [15]. The rolling-
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element data was used for detecting the presence of cage fault components. Fig-

ure 4.13 and Fig. 4.14 shows the spectrum relevant to the frequency band of cage

fault for 0.007-inch and 0.028-inch rolling element fault, respectively. We assume

that the cages were damaged while introducing faults in the rolling element. The

presence of the cage-fault specific frequency in all the cases validates the assump-

tion. In the low-load instances, for both the severity of CWRU data, multiple

frequency components are observed in the vicinity of the fault component. How-

ever, with increased load, fault magnitude has increased considerably, and has

become more prominent.
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Figure 4.13: Vibration spectrum of CWRU data for detecting a 0.007-inch cage-
train fault.

4.5.5 Broken Rotor Bar Detection

The damaged rotor of the motor was used for validating the signatures under a

single broken rotor bar fault. The first condition is tested with the motor run-

ning under no external load, except the inertia of the coupled generator. The

spectrum of the faulty case, when compared to the healthy motor, is shown in

Fig. 4.15(a). In this case, the slip is low, and the fault component is close to the

fundamental rotational frequency. However, signal conditioning by removing the
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Figure 4.14: Vibration spectrum of CWRU data for detecting a 0.028-inch cage-
train fault.

rotational frequency and its harmonic has negated the spectral leakage, and the

fault harmonics are visible. Specifically, the fourth fault harmonic is observed for

the low-load. No such component is visible for the healthy case. For the healthy

motor, signal conditioning had almost removed the rotational frequency. When

the load is increased, the principal fault component has become more prominent,

as seen in Fig. 4.15(b), and the magnitudes are also higher compared to the healthy

case.
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Figure 4.15: Vibration spectrum of experimental data for detecting a single broken
rotor bar fault. For (a) fbrb(−4) = 24.58 Hz, fbrb(4) = 25.56 Hz, and for (b)
fbrb(−2) = 20.51 Hz, fbrb(−1) = 22.54 Hz, fbrb(1) = 26.31 Hz, fbrb(2) = 28.49 Hz.
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4.5.6 Hypothesis Testing and Fault Detection Statistics

A Monte-Carlo simulation (MCS) is conducted to determine the detector perfor-

mance using a synthetic signal. The parameters of the input signal (4.3) used

for the MCS are ω ∼ U(0.01π, 0.5π), φ ∼ U(0, π), P(A|H0) ∼ U(0, γ − τ),

P(A|H1) ∼ U(γ + τ, 10), and γ = 5, U(a, b) denotes the uniform distribution

within the range a and b. The tolerance τ decides the separation between the

two hypotheses from which A is drawn. Figure 4.16 shows the effect of the input

SNR on the detector’s performance for different values of tolerance. We observe

that with increasing SNR, the detector performance improves as the probability

of detection increases, and the likelihood of false alarm decreases, which demon-

strates the noise-robustness of the detector. Also, the performance of the detector

improves as τ increases. We have carried out 1000 trials for each SNR value.

The robustness of the overall fault detection scheme can be judged by the noise

performance of individual modules of the algorithm. The components that are to

be suppressed, in general, have high-SNR. The performance of the signal condi-

tioner can be assessed by its frequency estimation accuracy, which is superior under

high-SNR [93]. Similarly, the spectral estimator can estimate the low-magnitude

fault components accurately, as shown in [16].

The data from the lab-setup and CWRU were analyzed separately to gauge

the accuracy of the overall fault detection unit. We have conditioned the data and

then estimated the spectrum in a small band around the theoretical fault frequency.

The peak spectral amplitude of all the healthy-motor data is augmented, and the

maximum value is set as the threshold γ. The conditioned data from each faulty

and healthy cases were tested for the given hypothesis (4.4) using γ. The test was

repeated for different loads of each healthy and faulty data. The performance of

the overall fault detection algorithm is provided in Table 4.1. From Table 4.1, we

observe that all the fault cases from CWRU were successfully detected using the
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Figure 4.16: Effect of SNR for different values of tolerances (τ) on the probability
of false alarm and probability of detection for the designed detector.

proposed method. The detection accuracy with the lab-setup data is also high.

The percentage accuracy can be calculated as (1−Pe) ∗ 100 by using the value of

Pe from (4.9). The existing margin of classification error of the lab-setup data can

be attributed to multiple low-load data and the well-known challenges of detecting

faults of a medium-sized SCIM.

Table 4.1: Fault detection performance

Fault type Percentage accuracy

lab-setup data CWRU data

Broken rotor bar 95.09 % Not available

Rolling element fault 98.44 % 100 %

Cage defect 98.36 % 100 %

Inner raceway fault 90.33 % 100 %

Outer raceway fault 96.77 % 100 %

A comparison with the best performers that have used CWRU data is given

in Table 4.2. The proposed method has achieved 100% accuracy like few existing

state-of-the-art methods. However, the non-requirement of fault data for fixing

the threshold, minimal use of computational resources for training, and proposed
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generic nature of the algorithm set it apart from the others.

Table 4.2: Detection accuracy for CWRU dataset

Reference, year Detection Accuracy (%) Fault data required (Y/N)

[154], 2020 99.58 Y

[155], 2020 100 Y

[156], 2019 99.93 Y

[157], 2019 100 Y

[66], 2018 99.95 Y

[158], 2018 100 Y

[159], 2016 99.83 Y

[160], 2015 99.55 Y

Proposed work 100 N

4.6 Conclusions

This chapter has proposed a fault detection method for SCIMs using single-axis

data from a tri-axial vibration sensor. The algorithm has been used to detect

different bearing faults and a single BRB under low and high loads using data

from a 22-kW SCIM laboratory setup. Additionally, publicly available CWRU

data was also used for evaluation. The method can also be extended for detecting

other faults whose spectral signatures are known.

The EKF-based conditioning can track, estimate, and remove multiple dom-

inant frequency components. The conditioning reduces the spectral leakage and

aids in the accurate estimation of the fault amplitude. The spectral estimator

used in this work has low-complexity and is suitable for portable embedded im-

plementations, which is quite necessary for the Internet of things (IoT)-enabled

Industry 4.0 standard. We observed that the magnitude of the rotational fre-
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quency component plays a vital role in normalizing and distinguishing the fault

cases. The hypothesis testing scheme improves the detection under noisy condi-

tions and reduces false alarms by incorporating the inherent fault magnitude in

healthy cases.

The proposed method has successfully detected all the healthy and faulty-

motor cases of the drive-end 12 kHz CWRU data with 100% accuracy. Moreover,

unlike DL and ML-based methods, this method only needs a few healthy cases

for determining the threshold. The method can be expanded to IoT-based Edge

devices for cloud-based anomaly detection of SCIMs. However, this would require

further studies into the method’s memory, speed, and power requirement. Addi-

tionally, the procedure can be extended to detect faults in associated loads coupled

to the motors and their bearings from the motor vibrations themselves.
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C H A P T E R 5

Bayes Maximum a-Posterior Spectral

Estimation for Stator Current

Analysis

A Bayesian framework for spectral estimation of a stationary signal is pro-

posed. The prior probability of the parameters is chosen based on the first-order

Gauss-Markov process. The posterior density is defined for a time-varying autore-

gressive (TVAR) model conditioned on the prior density. We have used maximum-

a-posterior estimation to find the TVAR parameters. The estimation involves a

regularized least square solution. The regularization step circumvents the inver-

sion of the ill-conditioned autocorrelation matrix. The resolution of the proposed

method is independent of the data length. However, increased observation re-

sults in the reduction of the mean squared error. The state and observation noise

variances have been estimated iteratively. The overall implementation of the al-
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gorithm is also provided. Additionally, we have compared the proposed method

with established available methods.

The proposed method has been used to estimate the spectrum of the condi-

tioned stator current for detecting SCIM defects. The fault detection algorithm

has been tested and validated on the experimental laboratory setup, as discussed

in Section 3.5.

5.1 Contribution of the Chapter

The contribution of this chapter can be enumerated as

1. We propose a Bayesian model-based sequential spectral estimator. A Gauss-

Markov random walk model has been used to model the uncertainty of the

TVAR process. The accuracy is better than classical methods and is on

par with AR-spectrum and MUSIC. It is especially suited for low-data and

RT applications. A sequential algorithm is also established to estimate the

associated latent variables.

2. The proposed high-resolution spectral estimator has been applied for detect-

ing different faults of a SCIM.

3. The proposed method is implemented on an IoT-based framework for low

data-rate applications.

Outline: The chapter is structured as follows: Section 3.2 describes the pro-

posed spectral estimator and its statistical evaluation, followed by a discussion on

the statistical resolution of the method in Section 3.3. Section 3.4 presents the

fault detection scheme using the previously proposed signal conditioning and slip

estimation, followed by fault detection results in Section 3.6. Section 3.7 summa-

rizes and concludes the chapter.
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5.2 Signal Model and Problem Formulation

A q−component sinusoidal signal x(n) with amplitude Ai, normalized frequency

ωi, and phase φi defined as the real component of (1.13) is given as

x(n) =

q∑
i=1

Ai cos(nωi + φi), (5.1)

and ωi = 2πfi/Fs with j =
√
−1. fi and Fs are the ith signal frequency (Hz) and

sampling rate (samples/s), respectively. A TVAR model with parameters ai can

represent the above signal as

x(n) =

p∑
i=1

ai(n)x(n− i) + v(n), (5.2)

where p = 2q, and v(n) is the additive white Gaussian noise with zero mean and

covariance σ2
v , i.e., v(n) ∼ N(0, σ2

v). We start the iteration from n = p to maintain

causality. Hence, (5.2) can be expressed by a linear model as

x(n) = aT (n)x(n− 1) + v(n),

where a(n) =
[
a1(n) a2(n) · · · ap(n)

]T
, and

x(n) =
[
x(n) x(n− 1) · · · x(n− p+ 1)

]T
.

Now suppose we are observing the nth input data. Based on this input, we intend

to estimate a(n) at nth sample instance. During the transition from pth sample to

nth sample, we assume that the parameters ai(n)’s do not change. A non-changing

parameter-set is a valid assumption as the signal under consideration is stationary

with invariable frequency components.
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5.3 Maximum-a-posteriori Spectral Estimation

The probability density function (PDF) of x(n) conditioned on parameters ai(n)

is given as

p (x(n)|x(n− 1),a(n)) =
1√

2πσ2
v

exp

{
−
[
x(n)− aT (n)x(n− 1)

]2
2σ2

v

}
.

The joint distribution of the observation using the chain rule is given as

p (x(n)|x(n− 1),a(n)) =
n∏
i=p

p
(
x(i)|x(i− 1) · · ·x(i− p+ 1),a(n), σ2

v

)
(5.3)

Hence,

p (x(n)|x(n− 1),a(n)) = k1 exp

{
−

n∑
i=p

[
x(i)− aT (n)x(i− 1)

]2
2σ2

v

}
(5.4)

where k1 = (2πσ2
v)
−(n−p+1)/2. To introduce uncertainty in the model parameters,

we define the parameter a(n) as a first-order Gauss-Markov random walk. The

random-walk enables the sequential estimation paradigm and is given as

a(n) = a(n− 1) + u(n), (5.5)

where u(n) ∼ N (0, σ2
uI) , 0 is a vector with p zeros, and I is the p−dimensional

identity matrix.

5.3.1 Posterior Probability Density of the Parameter

The posterior probability of the parameter a(n) conditioned on the observation is

given by

p (a(n)|x(n)) =
p (x(n)|a(n)) p (a(n))

p (x(n))
(5.6)
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The prior distribution of the parameter denoted by p(a(n)) is derived from (5.5)

as

p (a(n)) = k2 exp

{
− 1

2σ2
u

[a(n)− a(n− 1)]T [a(n)− a(n− 1)]

}
, (5.7)

where k2 = (2πσ2
u)
−p/2. Therefore, putting (5.4) and (5.7) in (5.6), we have

p (a(n)|x(n)) ∝k1k2 exp

{
−

n∑
i=p

[
x(i)− aT (n)x(i− 1)

]2
2σ2

v

}

exp

{
− 1

2σ2
u

[a(n)− a(n− 1)]T [a(n)− a(n− 1)]

} (5.8)

5.3.2 Parameter Estimation

For simplification, we take natural logarithms on both sides of (5.8). Maximizing

the log-function with respect to the unknown parameter maximizes the posterior

PDF. The value of the parameter, where the posterior PDF is maximized is the

MAP-estimate of the parameter. The log-PDF is given as

ln p (a(n)|x(n)) = c2−
n∑
i=p

[
x(i)− aT (n)x(i− 1)

]2
2σ2

v

− 1

2σ2
u

[a(n)− a(n− 1)]T [a(n)− a(n− 1)] ,

(5.9)

where c2 = ln(k1k2) is a constant independent of a(n). Now, by equating

∂ ln p (a(n)|x(n))/∂a(n) = 0,

we have:

n∑
i=p

x(i− 1)x(i) =

{
n∑
i=p

x(i− 1)xT (i− 1)

}
a(n)+

σ2
v

σ2
u

[a(n)− a(n− 1)] . (5.10)
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From (5.10) we denote ρx(n) =
n∑
i=p

x(i− 1)x(i), Rxx(n) =
n∑
i=p

x(i− 1)xT (i− 1),

and κ = σ2
v/σ

2
u, to get

ρx(n) + κa(n− 1) = {Rxx(n) + κI}a(n)

therefore, a recursive estimate of the parameter a(n) in terms of its past value is

obtained by regularized least squares as

â(n) = [Rxx(n) + κI]−1 [ρx(n) + κa(n− 1)] (5.11)

5.3.3 Recursive estimation of Rxx(n) and ρx(n)

We have defined ρx(n) as

ρx(n) =
n∑
i=p

x(i− 1)x(i).

We can decompose ρx(n) as

ρx(n) =
n−1∑
i=p

x(i− 1)x(i) + x(n− 1)x(n).

Therefore,

ρx(n) = ρx(n− 1) + x(n− 1)x(n), (5.12)

similarly,

Rxx(n) = Rxx(n− 1) + x(n− 1)xT (n− 1) (5.13)

106



5.3 Maximum-a-posteriori Spectral Estimation

5.3.4 The Spectral Estimation

The power spectral density of the input signal is obtained by using the estimated

parameter-vector âi(n) as (2.11)

Px(ω, n) = σ̂2
v

/∣∣∣∣∣1−
p∑
i=1

âi(n)e−jω(i−1)

∣∣∣∣∣
2

,

5.3.5 Estimation of State and Observation Noise Variances

The PDF with unknown observation noise variance is given by (5.4). An MLE of

the variance is obtained by maximizing the PDF with respect to σ2
v as

∂ ln p (x(n)|a(n))
/
∂σ2

v = 0. (5.14)

The estimated noise variance is thus obtained as

σ̂2
v =

1

n− p+ 1

n−1∑
i=p

[
x(i)− âT (n)x(i− 1)

]2
,

The recursive counterpart of σ̂2
v is given by

σ̂2
v(n) =

(n− p)σ̂2
v(n− 1) +

[
x(n)− âT (n)x(n− 1)

]2
n− p+ 1

.

Similarly, σ2
u is obtained by solving ∂ ln p (a(n))/∂σ2

u = 0. p (a(n)) is obtained

from (5.6). The MLE is given as

σ̂2
u(n) =

1

p
‖â(n)− â(n− 1)‖2

2 .
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5.3.6 Implementation of the Spectral Estimator

The implementation of the sequential spectral estimator is summarized in Algo-

rithm 5.

Algorithm 5 Sequential spectral estimation

Input: â(n− 1), x(n), Rxx(n− 1), ρx(n− 1), σ̂2
u(n− 1), σ̂2

v(n− 1).
Output: â(n), P (ω).

1: for all n such that n > p do
2: Rxx(n) = Rxx(n− 1) + x(n− 1)xT (n− 1)
3: ρx(n) = ρx(n− 1) + x(n− 1)x(n)

4: σ̂2
v(n) = 1

n−p+1

[
σ̂2
v(n) +

{
x(n)− âT (n)x(n− 1)

}2
]

5: σ̂2
u(n) = 1

p ‖â(n)− â(n− 1)‖22
6: κ(n) = σ2

v(n)/σ2
u(n)

7: â(n) = [Rxx(n) + κI]−1 [ρx(n) + κa(n− 1)]

8: x(n) =
[
x(n),xT (n− 1)

]T
9: end for

10: P (ω, n) = σ̂2
v(n)

/∣∣∣∣ p∑
i=0

âi[n]e−jω
∣∣∣∣2,

5.4 Evaluation of the Proposed Spectral Estimator

We evaluate the peak-MSE of the spectrum and how it is affected by the input

SNR as shown in Fig. 5.1. For this simulation, 100 trials are performed for each

SNR. The noise is generated from a Gaussian distribution with zero mean and

appropriate variance for each trial. The true frequency of the signal was kept

constant at 50.11 Hz, and amplitude was fixed at 1 unit. The performance of all

the spectral estimators follows each other quite closely. If observed minutely, the

proposed estimator performs marginally better when the SNR is high. However,

its performance is comparable to the AR-spectrum. The Cramer-Rao lower bound

108



5.4 Evaluation of the Proposed Spectral Estimator

-5 0 5 10 15 20 25 30
Signal to Noise Ratio (dB)

-80

-70

-60

-50

-40

-30

M
S

E
 (d

B
)

CRLB Rayleigh MUSIC DFT AR Proposed Method

Figure 5.1: Mean squared error variation with the SNR. N = 1000
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Figure 5.2: Mean squared error variation with data length. SNR = 6.98 dB.

(CRLB) for single-frequency estimation (derivation in Appendix C) is given as

var(f) ≥ 3σ2
vF

2
s

π2A2
1N(N − 1)(2N − 1)

(5.15)

The MSE with different values of N is plotted in Fig. 5.2. For this simulation,

a single component with a frequency of 51.11 Hz was taken. The SNR was fixed

at 6.98 dB. It is observed that the MSE decreases with increasing data length for

all the estimators. The MSE of all the estimators asymptotically converges to a

constant value, after which N does not affect the MSE. It is also observed that the

asymptotic value is achieved fastest by both the AR-spectrum and the proposed

method. However, the proposed method performs better than the AR-spectrum

when N is low.
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Figure 5.3: Variation of the probability of resolution of two sinusoidal components
with different model-order.

For model-based methods, the resolution of the spectral estimation method

depends on the model order p. The resolving power of the proposed spectral is

evaluated using the probability of resolution. A signal with two components with a

1-Hz difference and unity amplitude is used to assess the probability of resolution.

Three test conditions with different SNR levels are taken into account. For each

value of p, 100 trials are conducted to find whether the components are resolved.

Two components are resolved if (5.16) is satisfied.

γ(f1, f2)
∆
= h(fµ)− 1

2
{h(f1) + h(f2)} < 0 (5.16)

where fµ is the mean of f1 and f2, and h(fi) is the magnitude of the fi
th component

obtained from the spectrum. The probability of resolution for various model order

is shown in Fig. 5.3.

5.5 Fault Detection using Bayesian MAP Spectrum

The implementation of the fault detection system, as illustrated in Fig. 5.4, is

described as follows:

1. The current signal x(n) is acquired at 400 samples/s with appropriate anti-
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Figure 5.4: Implementation of the fault detection algorithm

alias filtering.

2. The signal conditioner estimates the fundamental frequency and removes the

dominant components of x(n). The conditioned signal x̂0(n) is then stored

in a buffer of length 2000. This amounts to five seconds of acquisition time.

3. The spectral estimator searches between 0.5f0 and 0.6f0 to find the mixed

eccentricity peak component fr.

4. The motor nameplate data, bearing specification, and fr are then used to

find the theoretical fault components.

5. A small band is searched around the theoretical frequencies by the spectral

estimator, and the peak (ω) is detected.

6. The threshold (γ), buffered x̂0(n), and ω are then sent for hypothesis testing,

and the presence of fault is decided by the test statistic T0(x) and T1(x).
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5.6 Results and Discussion: Fault Detection

5.6.1 Detection of Outer-raceway Fault

Figure 5.5 showed the stator current spectrum for a motor with an outer raceway

fault when the motor was operated under low-load and high-load conditions. The

fault-specific components can be easily distinguished when compared to a healthy

motor spectrum.
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Figure 5.5: Outer-race fault spectrum extracted from the stator current.

5.6.2 Detection of Inner-raceway Fault

In fig. 5.6, we have compared the spectrum of bearing with damaged inner raceway

with a motor with healthy bearing. Two load cases are demonstrated in the figure.

It is observed from the figure that the proposed method has successfully identified

the faulty case for both the loads.

5.6.3 Detection of Rolling Element Fault

Conditioned stator current spectrum for the rolling element fault is shown in

Fig. 5.7 for low-load and high-load, respectively. The fault component magnitude

112



5.6 Results and Discussion: Fault Detection

170 171 172 173 174
Frequency (Hz)

0

0.5

1
N

or
m

. M
ag

.
10-5

Healthy
Faulty

Fault frequency 
component

(a) Very low load, 0.2% slip.

172 173 174 175 176
Frequency (Hz)

0

1

2

N
or

m
. M

ag
.

10-4

Healthy
Faulty

Fault frequency 
component

(b) 67%load, 1.93% slip

Figure 5.6: Inner-race fault spectrum extracted from the current signal.

increases with increased loads and also gains prominence compared to the healthy

spectrum.
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Figure 5.7: Rolling element fault spectrum extracted from the current signal.

5.6.4 Detection of Cage Fault

The cage of the bearing was inadvertently damaged while machining the rolling

element. Specific fault component was observed in the stator current spectrum,

as shown in Fig. 5.8 for two load cases. The magnitude of the fault component

decreases with increased loading. However, the fault component is distinguishable

in both cases.
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Figure 5.8: Cage fault spectrum extracted from the current signal.

5.6.5 Detection of Single Broken Rotor Bar Fault

Figure 5.9 shows the spectrum of the stator current of the spectrum with a single

broken rotor bar. Two conditions with low-load and high-load of 67% are shown

in Fig. 5.9(a) and 5.9(b). The fault magnitude has increased with increased load,

and the peak fault component magnitudes are higher than the healthy cases and

are easily distinguishable.
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Figure 5.9: Broken rotor bar fault spectrum extracted from the current signal.

5.7 Conclusions

The majority of the Bayesian spectral estimators assume a prior distribution of the

frequency. However, we can improve the performance of the model-based spectral
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estimator by using a prior distribution on the parameters. This chapter has taken

up the recent developments of TVAR-parameter estimates conditioned by the prior

distribution for spectrum estimation. The assumed random walk model has also

provided a way to estimate the spectrum sequentially. The resolution of parametric

spectral estimators depends on the model order rather than on the data length.

However, using a high-order model can result in spurious peaks in the spectrum.

With the proposed spectral estimator, we have observed that these peaks are

subdued, and accurate estimation of the frequency occurs with an increase in

the number of observations. Thus, higher-order can improve the resolution, and

longer data length can improve estimation accuracy. We have shown the effect of

data length and SNR on the estimation error and compared the performance with

four established methods. We have also evaluated the probability of resolution for

different SNR levels and demonstrated the effect of model-order on the resolution.

The spectral estimator needs further studies into its bias and variance to reduce

the estimation error.
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C H A P T E R 6

Embedded System Development for

Online Fault Detection

The fourth industrial revolution was ushered in with the capability of different

components in the industry to connect themselves to a network. Connectivity

enables remote monitoring and data storage of safety-critical equipment. In this

chapter we will present two schemes for online implementations of the fault de-

tector. The first scheme use the Rayleigh-quotient spectrum for detecting fault

components. SIMULINK Real-Time (SLRT) was used for implementing the fault

detection algorithm using an Intel embedded hardware. A single-phase stator

current was recorded using NI-PCI 6024 E analog interface.

The second implementation uses the sequential Bayes spectrum of conditioned

stator current for fault diagnosis. This framework is useful for monitoring multiple

motors with IoT-enabled modules that can record and process stator current and

transmit the decision to a central server for storing. We use local processing

units to reduce large scale data transmission. Two ESP modules are configured as
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master-slave units to function as the data handler and fault detector, respectively.

A sampling rate of 400 Hz is suitable for acquiring the data without aliasing for

both the implementations, considering lower execution time.

Outline: The chapter is structured as follows: Section 6.1 describes the SLRT-

based implementation of RQS estimator for fault detection. Section 6.2 presents

the IoT-based fault detector that uses the Bayes MAP spectrum. This section

includes the data communication protocols and fault detection framework for a

multiple motor scenario. Section 6.3 summarizes and concludes the chapter.

6.1 SIMULINK Real-Time Implementation for a Stan-

dalone Fault Detection System

The complete fault detection algorithm has been realized on Intel-based embed-

ded hardware for online and RT execution. The hardware consists of an ASUS

Z87 mainboard with Intel Core i7 (3.4 GHz) processor, 8 GB DDR3 RAM, and

NI PCI 6024E analog interface to acquire analog input signal from the motor.

The embedded system is shown in Fig. 6.1a. The analog interface has a 12-bit

resolution and supports up to 200 kHz sampling. DOS-based RT kernel known as

SLRT developed by Mathworks is used as the operating system. A similar imple-

mentation for the detection of arc faults with SLRT can be found in [161]. SLRT

is a host-target based system, where the fault detection program is developed on

the host machine with SIMULINK and MATLAB. The host compiles the code

and sends the executable to the target computer for RT execution. The NI PCI

6024E of the target acquires a single-phase stator current with 400 samples/s for

20 seconds. The received signal is conditioned using EKF, and a data matrix (X)

is created. The data matrix is used for spectral estimation and eventual fault

evaluation. A screen-shot of the online system console is shown in Fig. 6.1b.
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Table 6.1: Hardware specification of the SLRT system

Module Name Description

Current Sensor
Fluke i1010s
(Hall effect)

AC input: 100 mA - 1000 A
RMS, Frequency: 5 Hz - 100 kHz,
Output: 1 mv/A, 10 mv/A, 100
mv/A.

Mainboard Asus (Z87)

Processor: 3.4 GHz Intel Core i7,
RAM: 8GB DDR3 (1600 MHz),
PCI slots: 3xPCI, 2xPCIe(x16),
Ethernet: 1xGigabit LAN Con-
troller.

Analog Input In-
terface

NI PCI 6024E

Channels: 16 Single ended, 8
differential ended, Sampling fre-
quency: 200 kHz (max), Resolu-
tion: 12 bit.

6.1.1 Implementation of the Rayleigh-Quotient Spectral Estima-

tor

The Rayleigh-quotient spectral estimator can be formulated using simple matrix

operations for implementation. This formulation is suitable for finding the spectral

magnitudes in a single or multiple smaller frequency bands. The formulation

involves a matrix multiplication followed by extraction of diagonal elements as

given below

ĥ = 1
L

[
WHR̂xW

]
i,i

i = 1, 2, . . . ,m. (6.1)

The diagonal vector of the matrix (WHR̂xW ), contains the spectrum where the

search is made. W =
[
w1 w2 . . . wm

]H
is known as the search manifold

matrix, and wi is defined as

wi =
[

1 ejωi · · · ejωi(L−1)

]H
, i = 1, 2, . . . ,m,
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(a) Photograph of the developed fault detec-
tion system

(b) Online fault detector console

Figure 6.1: The online fault detection system and a screen-shot taken during a
test run.

where ωi ∈ [ωl, ωu] represents the normalized frequency band of m atoms where

the search is done, and L is the size of the autocorrelation matrix R̂x.

6.1.2 Implementation of the Online Fault Detector

The SIMULINK model for the online implementation of the fault detector is de-

veloped in accordance with the system described in Fig. 3.7. The working of the

full system is given in Fig. 6.2

The fault detection is accomplished in two phases. The first stage is used for

initialization and the second for execution. In the first phase, the motor param-

eters and variable dimensions are defined. The fixed dimensions of the variables

avoids dynamic memory allocation. The initialization takes place in non-RT. The

initialized parameters are required for slip estimation, supply frequency estima-

tion, sampling time, spectral estimation, and time-steps. The execution phase

estimates the amplitude of the fault specific frequency components. The stator

current signal is acquired with the analog input card of NI PCI 6024E. The cur-

rent data is used for slip and supply frequency estimation. The supply frequency

estimator also conditions the input signal. The time of execution and the data
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Figure 6.2: Fault detection scheme for SLRT implementation

acquisition sample time is same till spectral estimation, and the execution is per-

formed in RT. Buffers are used for storing frames of conditioned data. The spectral

estimator executes with a slower execution time and operates over the frame. The

SIMULINK implementation of the fault detector is shown in Fig. 6.3. The data

processing steps are enumerated as
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Figure 6.3: Implementation of the fault detector in SIMULINK for SLRT.

i. The stator current is acquired with 400 samples/s. For detecting only BRB,

a sampling rate of 200 samples/s is adequate.
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ii. The acquired data is used for supply frequency estimation and signal condi-

tioning.

iii. A block estimates the slip according to (3.19).

iv. Different buffers store the conditioned data, slip, and fundamental frequency.

The data frames are then sent for further processing.

v. For a particular frame of stator current, the mean values of fundamental

frequency, and the slip are used for fixing the search band for spectral esti-

mation.

vi. Autocorrelation matrix is constructed from the data frame.

vii. Multiple search bands corresponding to each fault are defined using supply

frequency and slip values.

viii. Spectral estimation is conducted for each frame.

ix. Normalized magnitude of the spectral peaks are determined and used for

decision.

6.2 Internet of Things Implementation for Multiple

Motor Monitoring

There are two significant realms involved in Internet of things (IoT)-based remote

monitoring. The first method relies on local resources for the acquisition and

communication of data [162]. The central-server handles the processing. However,

to reduce the intensive data-rate and error-prone nature of the former process,

in-situ processing of the raw data and sending the diagnostic parameters to a
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central-server form the second paradigm [163]. This section showcases an IoT-

based framework for detecting faults of squirrel cage induction motors. In this

approach, each motor is provided with a detector unit that can acquire motor

signals and process them to detect faults. We have considered a single broken

rotor bar and defects in different parts of the bearing like inner-race, outer-race,

rolling-element, and cage. The detector is provisioned to store fault information

into a central server, accessed by a registered user.

6.2.1 The IoT Architecture

The architecture of the IoT system consists of three major parts, (i) The central

server, (ii) Client: User, and (iii) Client: Detector, as shown in Fig. 6.4. The

central server acts as a bridge between the user and detector. The user can request

the server and observe the status of a motor using the HTTP protocol. Each motor

is connected to a detector unit, which processes motor parameters and sends fault

status to the server. The server is run on Python 3 and can handle GET and

POST requests from the user and the detector.

The detector consists of two ESP modules that operate in a master-slave con-

figuration. The master unit uses an ESP-8266 module to communicate with the

central server and controls the slave unit using serial communication. The slave

uses an ESP-32 Wrover, having two cores. The core 0 of the slave unit gener-

ates a clock pulse for driving IC MAX280- a fifth-order, low-pass Butterworth

filter. Core 1 is used for data acquisition and fault detection. The detector is

implemented using embedded C++ in the Arduino IDE. The description of the

different hardware components are provided in Table 6.2.
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Figure 6.4: Schematic block diagram of the IoT-based implementation

6.2.2 Data Communication and Fault Detection

i. The user sends an HTTP GET request to register the motor using the serial

number and then an HTTP PUSH request to send a user-info file in the

server in JavaScript object notation (JSON) format for the first time only.

The user-info file contains the nameplate motor and bearings specifications

in the following form:

“user − info” : {“P1” : “ < val > ”, “P2” : “ < val > ”, . . . , }

where Pi are the input parameters having unique names and their corre-

sponding values.

ii. The detector sends an HTTP GET request to the server with basic authenti-

cation and motor serial number as a user-agent header to receive the user-info

file only once. If the file is not found, i.e., the user has not registered the

motor, the detector gets the GET response 404.
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Table 6.2: Hardware specification of the IoT system

Module Name Description

Current sensor

SCT013-000
(Current
transformer
type)

AC input: 0-100 A, output: 0-50
mA,

Anti-aliasing fil-
ter

IC MAX280

5th-order, zero-error, But-
terworth, switched-capacitor
low-pass filter, cutoff frequency:
20 kHz (max)

Master unit
ESP32-
WROVER-B

Flash: 4 MB, PSRAM: 4 MB,
clock: 160 MHz, operating volt-
age: 2.7 - 3.6 v, SRAM: 520 KB,
ADC resolution: 12 bit

Slave unit ESP8266
RAM: 512 KB, clock: 80 MHz,
configured baud rate: 115200,
Wi-Fi: IEEE 802.11 b/g/n

iii. The master unit sends the received user-info file to the slave unit for its stor-

age in the flash memory. Every master unit is hard-coded with an identifier

same as the serial number of the motor. The identifier serves as the unique

identity of the detector to communicate with the server. The master unit

uses network time protocol over the UDP socket to get time and date-stamps

and triggers the slave through serial communication for fault detection. The

user fixes the time interval of the trigger.

iv. The slave unit stores the received user-info as a JSON file using the serial

peripheral interface flash file system (SPIFFS).

v. After passing the current signal through the anti-aliasing filter, it is digitized

and stored using the 12-bit analog to digital converter of the slave module.

The sampling rate of 2 kHz has been used. However, the signal is down-

sampled to 400 Hz for the present application for better spectral resolution.
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The built-in pseudo-RAM of the slave unit provides extra memory for storing

the current time samples.

vi. The stored samples are processed by the slave, and the output is serially

sent to the master unit in the following format:

{“Freq” : {“f1” : “ < val > ”, “f2” : “ < val > ”, . . .}

{“Amp” : {‘a1” : “ < val > ”, “a2” : “ < val > ”, . . .}

where fi and ai are the names of specific frequencies and amplitudes along

with their values val.

vii. The master sends a POST request with the motor serial number in the user-

agent header and data-time stamp with the basic authentication header. A

file containing the frequency and amplitude information are sent to the server

for its appropriate storage as

< motor identifier > / < data >< time > .JSON.

6.3 Conclusions

This chapter presents two schemes for the online fault detection. The SLRT based

hardware platform was developed for analyzing a single motor. Single-phase stator

current is acquired for fault detection. For the SLRT-based implementation, the

Rayleigh-quotient spectrum is used for fault detection. However, for sequential

and RT applications, the Bayesian spectral estimation is used in the IoT-based

system. The IoT-based system is suitable for detecting faults of multiple motors

and can be used for future studies with historical fault analysis.
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C H A P T E R 7

Conclusions and Future Research

Directions

This thesis tackles the problem of detection and estimation of low-amplitude

frequency components buried under noise and masked by the presence of high-

magnitude components. The associated phase information has been used to re-

move multiple dominant components, which has further improved the detection of

the minor components. We have used the framework for detecting incipient faults

in squirrel cage induction motors.

In Chapter 2, we have investigated the IF estimation of multiple components

simultaneously. We have proposed an analytic form of a linearized observation

model and used a constrained Kalman filter for the sequential analysis. Analytic

closed-form matrices have substituted the dynamic linearization of the observation

for general model-order and higher accuracy. The estimator is suitable for esti-

mating closely-spaced frequency components or components having sharp changes

in the frequency. The recovery time in case of the abrupt transition is better than
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other state-of-the-art methods. We have also observed that the technique out-

performs other methods while estimating the frequency with a higher chirp-rate.

The performance of the proposed method under high-SNR is proficient. However,

its performance in low-SNR condition needs improvement. Three real-world ex-

amples to demonstrate the applicability and superiority of the proposed method

under unknown SNR levels. The technique has the advantage of using a model in

addition to the data for better performance.

In Chapter 3, the theory of the Rayleigh quotient was utilized for designing

the proposed spectral estimator. We observed the performance of the spectral

estimator for estimating frequency components to be better than DFT and is

similar to that of MUSIC. Additionally, it can find the amplitude of the fault

components and is also faster, unlike MUSIC. This chapter uses an EKF-based

signal conditioner for eliminating the fundamental supply frequency of a single-

phase stator current input. The conditioning had enhanced the signatures of a

partially broken bar fault under light load conditions. However, the detection of

multiple defects requires removing multiple dominant components. Significantly,

the harmonics of the rotational frequency are quite overwhelming when compared

to the low-amplitude fault components.

Hence, the mode-extraction property of the IF estimator of Chapter 2 was

used for the targeted removal of multiple dominant components in chapter 4.

The Rayleigh-spectrum was also extended for detecting different incipient faults

of the SCIM using a single vibration sensor. This chapter has also proposed a

minimum distance-based detector for incorporating incipient and inherent fault

condition information into the decision process for reducing false alarms under

noisy conditions. The proposed method is advantageous over recently proposed

data-driven and DL-based methods due to its high-accuracy and non-requirement

of faulty-motor data for the training. The technique only requires a few instances
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of healthy-motor data for fixing the threshold.

Chapter 5 proposes a Bayesian MAP-based method for spectral estimation

using a first-order generalized Gauss-Markov random walk as the prior distribution

of the states. The Gauss-Markov process solves a regularized least-squares problem

and aids in the sequential estimation of the spectrum. We presented two embedded

system implementation for fault detection in Chapter 6. The first example uses a

SIMULINK-based framework for implementing the RQS estimator for detecting

the faults. The second example uses the Bayes MAP estimator for a portable and

IoT-based implementation. The first method is useful for a single motor. Whereas,

the IoT-based method is suitable for a multi-motor scenario.

7.1 Future Scope of Reserch

The thesis leaves ample scope of extension for different applcations where fre-

quency estimation can be useful. Few research avenues are discussed below:

i. High-resolution spectral imaging: Scanning macro X-ray fluorescence (MA-

XRF) imaging is used for deconvolving hidden images of old art-works by

tracing element spectroscopy. An X-ray beam is used to scan the whole

image, and spectral information from each pixel are used to decipher the

presence of different elements. There are two associated problems that can

be an extension of this thesis. Particularly the use of spectral estimation

to for high resolution traces and use of signal conditioning to remove the

effect of spectral leakage. Especially, while estimating the presence of minor

elements.

ii. Load characterization and deconvolving its effect from fault features: The ex-

perimental setup was mainly used for detecting faults under constant load-

ing. However, in real life, the motors have to operate under load-torque
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oscillations. The provision of using a simplified motor model to estimate

and remove the load-torque oscillation can make the proposed alogorithms

robust in an industrial setting.

iii. Use of spatial motor data and Graph-based detection of faults: In a industry,

multiple motors are used for executing a task in co-operation. For example,

there are four to six traction motors that drive a locomotive engine. Simi-

larly, in an steel rolling inustry, multiple motors are used for processing the

steel. In such a scenario, a graph-signal processing architecture can be used

to study the effect of differential load and fault in one motor on the overall

operation of the plant.

iv. Deep learning and its generalizability: The recent use of deep learning has

influenced the field of fault detction immensely. However, there are few

problems that arise due to the absence of multiple datasets and training

scenarios covering the whole spectrum of motor operation. More emphasis

should be laid on how the developed models can be used for motors having

no fault-data using exsting trained models.
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A P P E N D I X A

Experimental Setup Specification

A.1 SCIM specification

Three-phase, four-pole squirrel cage induction motor (ABB), delta connection with

28 rotor bars. Rated characteristics: power = 22 kW, voltage = 415 V, current =

40.5 A , speed = 1460 rpm, frequency = 50 Hz.

A.2 Laboratory bearing specification

Model: SKF 6310-2ZR with Nb = 8 units, bd = 19.05 mm, dρ = 82 mm, β = 0.

A.3 CWRU bearing specification

Model: SKF 6205-2RS with Nb = 9 units, bd = 7.94 mm, dρ = 39.0398 mm, β = 0.

A.4 Offline system specification

HP Z420 workstation with 2.80 GHz Intel Xeon CPU E5-1603 processor, 16 GB

RAM, 64-bit Windows 10 operating system, and MATLAB R2019b is used.

133



Experimental Setup Specification

A.5 Data acquisition specification

Make: Yokogawa DL 850E, ADC Resolution: 16 Bit, Sampling rate: 20 kHz (max:

100 MHz), Channel: 16 (Type: current, voltage, vibration, acoustic), Connectiv-

ity/ Data Storage: Ethernet connected to desktop for data transmission storage,

Anti-aliasing filter: Low pass analog filter 4 kHz cut-off frequency.
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A P P E N D I X B

Derivation of H [n]

Expanding (2.10), we have

h (θ[n]) = (ejω1[n] + · · ·+ ejωp[n])x[n− 1]−

(ejω1[n]ejω2[n] + · · ·+ ejωp−1[n]ejωp[n])x[n− 2]+

· · · (−1)p+1
(
ejω1[n] · · · ejωp[n]

)
x[n− p].

Now, H [n] is given by

H [n] =
∂h(θ[n])

∂(θ[n])
=

[
∂h(θ[n])

∂ω1[n]
· · · ∂h(θ[n])

∂ωp[n]

]
Therefore, the kth element of H [n] can be obtained as

∂h(θ[n])

∂ωk[n]
= jejωk[n]x[n− 1]− j(ejω1[n]ejωk[n] + · · ·+ ejωp[n]ejωk[n])x[n− 2]+

· · · j(−1)p+1
(
ejω1[n] · · · ejωp[n]

)
x[n− p]

= jejωk[n]

[
1 −

p∑
i=1,i 6=k

ejωi[n] · · · (−1)p+1
p∏

i=1,i 6=k
ejωi[n]

]
x[n− 1]
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Hence,

HT [n] =

j


ejω1[n] · · · 0

...
. . .

...

0 · · · ejωp[n]




1 −
p∑
i=2

ejωi[n] · · · (−1)p+1
p∏
i=2

ejωi[n]

...
...

. . .
...

1 −
p−1∑
i=1

ejωi[n] · · · (−1)p+1
p−1∏
i=1

ejωi[n]

x[n− 1]

alternatively, HT [n] = φWx[n− 1].
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A P P E N D I X C

Derivation of Cramer Rao Bound

The real signal model is given by

x[n] = A cos

(
2πf

Fs
n+ φ

)
+ w[n] (C.1)

where A, f , φ are the amplitude, frequency and phase of a single sinusoid re-

spectively. Fs is the sampling frequency and w[n] is the white additive gaussian

noise. The probability density function of x0, x1, . . . , xN−1 represented by x and

parameterized by f is given by

Px(x; f) =
1

(2πσ2)N/2
exp

− 1

2σ2

N−1∑
n=0

[
x(n)− A cos

(
2πf

Fs
n+ φ

)]2
 (C.2)

Taking natural logarithm on both side gives

ln px(x; f) = −N
2

ln
(
2πσ2

)
− 1

2σ2

N−1∑
n=0

[
x(n)− A cos

(
2πf

Fs
n+ φ

)]2

(C.3)
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Derivation of Cramer Rao Bound

The first derivative w.r.t to f is given by

∂ ln px(x; f)

∂f
= − 2πA

σ2Fs

N−1∑
n=0

n

[
x(n)− A cos

(
2πf

Fs
n+ φ

)]
sin

(
2πf

Fs
n+ φ

)
(C.4)

= − 2πA

σ2Fs

N−1∑
n=0

n

[
x(n) sin

(
2πf

Fs
n+ φ

)
− A

2
sin

(
4πf

Fs
n+ 2φ

)]
(C.5)

The second derivative w.r.t to f is given by

∂2 ln px(x; f)

∂f 2
= − 2πA

σ2Fs

N−1∑
n=0

n

[
2π

Fs
nx(n)cos

(
2πf

Fs
n+ φ

)
− 2πA

Fs
n cos

(
4πf

Fs
n+ 2φ

)]
(C.6)

Putting the value of x[n] from (C.1) in the above equation, we get

∂2 ln px(x;f)
∂f2

=

− 2πA
σ2Fs

N−1∑
n=0

n
[

2π
Fs
n
{
Acos2

(
2πf
Fs
n+ φ

)
+ w[n]cos

(
2πf
Fs
n+ φ

)}
− 2πA

Fs
n cos

(
4πf
Fs
n+ 2φ

)]
(C.7)

Taking negative expectation on both sides we get

−E ∂
2 ln px(x; f)

∂f 2
=

2πA

σ2Fs
E
N−1∑
n=0

n

[
2π

Fs
nAcos2

(
2πf

Fs
n+ φ

)]
(C.8)

It is to be noted that

N−1∑
n=0

nE
[
w[n]cos

(
2πf

Fs
n+ φ

)]
≈ 0

as w[n] and φ are independent,
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N−1∑
n=0

n2E
[
cos

(
4πf

Fs
n+ 2φ

)]
≈ 0

and
N−1∑
n=0

n2E
[
cos2

(
2πf

Fs
n+ φ

)]
=

N−1∑
n=0

n2

2

Therefore from (C.8) we have

−E ∂
2 lnPx(x; f)

∂f 2
=

4π2A2

σ2F 2
s

N−1∑
n=0

n2E
[
cos2

(
2πf

Fs
n+ φ

)]

=
4π2A2

σ2F 2
s

N−1∑
n=0

n2

2
=

2π2A2

σ2F 2
s

N−1∑
n=0

n2 =
2π2A2

σ2F 2
s

N(N − 1)(2N − 1)

6
(C.9)

The CRB is found by

var(f) ≥ 1

−E
{
∂2 lnPx(x;f)

∂f2

}
Hence using the above identity in (C.9) gives

var(f) ≥ 3σ2F 2
s

π2A2N(N − 1)(2N − 1)
(C.10)
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and J. G. Norniella, “Unambiguous Detection of Broken Bars in Asynchronous Motors by

Means of a Flux Measurement-Based Procedure,” IEEE Trans. Instrum. Meas., vol. 60,

no. 3, pp. 891–899, 2011.

[84] C. Bruzzese, “Analysis and application of particular current signatures (symptoms) for

cage monitoring in nonsinusoidally fed motors with high rejection to drive load, inertia,

and frequency variations,” IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4137–4155,

2008.

147



[85] J. Kim, S. Shin, S. B. Lee, K. N. Gyftakis, M. Drif, and A. J. M. Cardoso,“Power Spectrum-

Based Detection of Induction Motor Rotor Faults for Immunity to False Alarms,” IEEE

Trans. Energy Convers., pp. 1–10, 2015.

[86] C. Yang, T.-j. Kang, S. B. Lee, J.-y. Yoo, A. Bellini, L. Zarri, and F. Filippetti, “Screening

of False Induction Motor Fault Alarms Produced by Axial Air Ducts based on the Space

Harmonic - Induced Current Components,” IEEE Trans. Ind. Electron., vol. 62, no. 3, pp.

1803–1813, 2014.

[87] M. Hamadache, D. Lee, and K. C. Veluvolu, “Rotor Speed-Based Bearing Fault Diagno-

sis (RSB-BFD) under Variable Speed and Constant Load,” IEEE Trans. Ind. Electron.,

vol. 62, no. 10, pp. 6486–6495, 2015.

[88] M. Garcia, P. A. Panagiotou, J. A. Antonino-Daviu, and K. N. Gyftakis, “Efficiency As-

sessment of Induction Motors Operating under Different Faulty Conditions,” IEEE Trans.

Ind. Electron., vol. 66, no. 10, pp. 8072–8081, 2018.

[89] A. Khezzar, M. Y. Kaikaa, M. E. K. Oumaamar, M. Boucherma, and H. Razik, “On the

Use of Slot Harmonics as a Potential Indicator of Rotor Bar Breakage in the Induction

Machine,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4592–4605, nov 2009.

[90] T.-j. Kang, J. Kim, S. B. Lee, and C. Yung, “Experimental Evaluation of Low-Voltage

Offline Testing for Induction Motor Rotor Fault Diagnostics,” IEEE Trans. Ind. Appl.,

vol. 51, no. 2, pp. 1375–1384, 2015.

[91] A. Stief, J. R. Ottewill, J. Baranowski, and M. Orkisz, “A PCA and Two-Stage Bayesian

Sensor Fusion Approach for Diagnosing Electrical and Mechanical Faults in Induction

Motors,” IEEE Trans. Ind. Electron., vol. 66, no. 12, pp. 9510–9520, 2019.

[92] M.-K. Liu, M.-Q. Tran, and P.-Y. Weng, “Fusion of Vibration and Current Signatures for

the Fault Diagnosis of Induction Machines,” Shock. Vib., vol. 2019, 2019.

[93] A. K. Samanta, A. Routray, S. R. Khare, and A. Naha, “Direct Estimation of Multiple

Time-Varying Frequencies of Non-Stationary Signals,”Signal Process., vol. 169, p. 107384,

2020.

[94] M. M. Rahman and M. N. Uddin, “Online Unbalanced Rotor Fault Detection of an IM

Drive based on Both Time and Frequency Domain Analyses,” IEEE Trans. Ind. Appl.,

vol. 53, no. 4, pp. 4087–4096, 2017.

[95] A. Naha, A. Samanta, A. Routray, and A. Deb, “A Method for Detecting Half-broken

Rotor Bar in Lightly Loaded Induction Motors using Current,” IEEE Trans. Instrum.

Meas., vol. 65, no. 7, 2016.

[96] A. Garcia-perez, R. D. J. Romero-troncoso, E. Cabal-yepez, and R. A. Osornio-rios, “The

Application of High-Resolution Spectral Analysis for Identifying Multiple Combined Faults

in Induction Motors,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 2002–2010, may 2011.

148



[97] Y.-H. Kim, Y.-W. Youn, D.-H. Hwang, J.-H. Sun, and D.-S. Kang, “High-Resolution

Parameter Estimation Method to Identify Broken Rotor Bar Faults in Induction Motors,”

IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 4103–4117, sep 2013.

[98] B. Xu, L. Sun, L. Xu, and G. Xu, “An ESPRIT-SAA-Based Detection Method for Broken

Rotor Bar Fault in Induction Motors,” IEEE Trans. Energy Convers., vol. 27, no. 3, pp.

654–660, 2012.

[99] V. Choqueuse and M. Benbouzid, “Induction Machine Faults Detection using Stator Cur-

rent Parametric Spectral Estimation,” Mech. Syst. Signal Process., vol. 52, pp. 447–464,

2015.

[100] G. Bouleux, “Oblique projection pre-processing and TLS application for diagnosing rotor

bar defects by improving power spectrum estimation,”Mech. Syst. Signal Process., vol. 41,

no. 1-2, pp. 301–312, 2013.

[101] K. Teotrakool, M. J. Devaney, and L. Eren, “Adjustable-speed Drive Bearing-fault Detec-

tion via Wavelet Packet Decomposition,” IEEE Trans. Instrum. Meas., vol. 58, no. 8, pp.

2747–2754, 2009.

[102] J. Seshadrinath, B. Singh, and B. K. Panigrahi, “Investigation of Vibration Signatures for

Multiple Fault Diagnosis in Variable Frequency Drives Using Complex Wavelets,” IEEE

Trans. Power Electron., vol. 29, no. 2, pp. 936–945, feb 2014.

[103] W. He, Y. Zi, B. Chen, F. Wu, and Z. He, “Automatic Fault Feature Extraction of Me-

chanical Anomaly on Induction Motor Bearing using Ensemble Super-wavelet Transform,”

Mech. Syst. Signal Process., vol. 54, pp. 457–480, 2015.

[104] J. J. Saucedo-Dorantes, M. Delgado-Prieto, R. A. Osornio-Rios, and R. de Jesus Romero-

Troncoso, “Multifault Diagnosis Method Applied to an Electric Machine based on High-

dimensional Feature Reduction,” IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 3086–3097,

2016.

[105] P. A. Delgado-arredondo, D. Morinigo-sotelo, R. A. Osornio-rios, J. G. Avina-cervantes,

H. Rostro-gonzalez, and R. D. J. Romero-troncoso, “Methodology for fault detection in

induction motors via sound and vibration signals,” Mech. Syst. Signal Process., vol. 83,

pp. 568–589, 2017.

[106] X. Yan and M. Jia, “Application of CSA-VMD and optimal scale morphological slice

bispectrum in enhancing outer race fault detection of rolling element bearings,” Mech.

Syst. Signal Process., vol. 122, pp. 56–86, 2019.

[107] X. Tu, Y. Hu, F. Li, S. Abbas, Z. Liu, and W. Bao, “Demodulated High-Order Syn-

chrosqueezing Transform With Application to Machine Fault Diagnosis,” IEEE Trans.

Ind. Electron., vol. 66, no. 4, pp. 3071–3081, 2019.

149



[108] C. Morales-Perez, J. Rangel-Magdaleno, H. Peregrina-Barreto, J. P. Amezquita-Sanchez,

and M. Valtierra-Rodriguez, “Incipient Broken Rotor Bar Detection in Induction Motors

using Vibration Signals and the Orthogonal Matching Pursuit Algorithm,” IEEE Trans.

Instrum. Meas., vol. 67, no. 9, pp. 2058–2068, 2018.

[109] Z. Zhao, S. Wu, B. Qiao, S. Wang, and X. Chen, “Enhanced sparse period-group lasso for

bearing fault diagnosis,” IEEE Trans. Ind. Electron., vol. 66, no. 3, pp. 2143–2153, 2019.

[110] A. Naha, A. Samanta, A. Routray, and A. Deb, “Low Complexity Motor Current Signature

Analysis Using Sub-Nyquist Strategy With Reduced Data Length,” IEEE Trans. Instrum.

Meas., 2017.

[111] F. Dalvand, M. Kang, S. Dalvand, and M. Pecht, “Detection of Generalized-Roughness and

Single-Point Bearing Faults Using Linear Prediction-Based Current Noise Cancellation,”

IEEE Trans. Ind. Electron., vol. 65, no. 12, pp. 9728–9738, 2018.

[112] F. B. Abid, S. Zgarni, and A. Braham, “Distinct bearing faults detection in induction

motor by a hybrid optimized SWPT and aiNet-DAG SVM,” IEEE Trans. Energy Convers,

vol. 33, no. 4, pp. 1692–1699, 2018.

[113] J. Wu, C. Wu, S. Cao, S. W. Or, C. Deng, and X. Shao, “Degradation data-driven time-

to-failure prognostics approach for rolling element bearings in electrical machines,” IEEE

Trans. Ind. Electron., vol. 66, no. 1, pp. 529–539, 2019.

[114] S. Schmidt and P. S. Heyns, “An open set recognition methodology utilising discrepancy

analysis for gear diagnostics under varying operating conditions,” Mech. Syst. Signal Pro-

cess., vol. 119, pp. 1–22, 2019.

[115] M. Y. Kaikaa and M. Hadjami, “Effects of the Simultaneous Presence of Static Eccentricity

and Broken Rotor Bars on the Stator Current of Induction Machine,” IEEE Trans. Ind.

Electron., vol. 61, no. 5, pp. 2452–2463, 2014.

[116] P. Shi, Z. Chen, Y. Vagapov, and Z. Zouaoui, “A new diagnosis of broken rotor bar fault

extent in three phase squirrel cage induction motor,” Mech. Syst. Signal Process., vol. 42,

no. 1-2, pp. 388–403, 2014.

[117] A. Bellini, F. Filippetti, G. Franceschini, C. Tassoni, and G. B. Kliman, “Quantitative

Evaluation of Induction Motor Broken Bars by Means of Electrical Signature Analysis,”

IEEE Trans. Ind. Appl., vol. 37, no. 5, pp. 1248–1255, oct 2001.

[118] B. Xu, L. Sun, and H. Ren, “A New Criterion for the Quantification of Broken Rotor Bars

in Induction Motors,” IEEE Trans. Energy Convers., vol. 25, no. 1, pp. 100–106, mar 2010.

[119] Y. Trachi, E. Elbouchikhi, V. Choqueuse, and M. E. H. Benbouzid, “Induction Machines

Fault Detection Based on Subspace Spectral Estimation,” IEEE Trans. Ind. Electron.,

vol. 63, no. 9, pp. 5641–5651, sep 2016.

150



[120] B. Halder and T. Kailath, “Efficient Estimation of Closely Spaced Sinusoidal Frequencies

Using Subspace-Based Methods,” IEEE Signal Process. Lett., vol. 4, no. 2, pp. 49–51, 1997.

[121] P. Stoica, H. Li, and J. Li, “Amplitude Estimation of Sinusoidal Signals : Survey , New

Results , and an Application,” IEEE Trans. Signal Process., vol. 48, no. 2, pp. 338–352,

2000.

[122] C. Concari, G. Franceschini, and C. Tassoni, “Differential diagnosis based on multivariable

monitoring to assess induction machine rotor conditions,” IEEE Trans. Ind. Electron.,

vol. 55, no. 12, pp. 4156–4166, 2008.

[123] R. Romero-Troncoso, D. Morinigo-Sotelo, O. Duque-Perez, P. Gardel-Sotomayor,

R. Osornio-Rios, and A. Garcia-Perez, “Early broken rotor bar detection techniques in

vsd-fed induction motors at steady-state,” in 2013 9th IEEE International Symposium on

Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED). IEEE,

2013, pp. 105–113.

[124] B. Ayhan, H. J. Trussell, M.-y. Chow, and M.-H. Song, “On the Use of a Lower Sampling

Rate for Broken Rotor Bar Detection With DTFT and AR-Based Spectrum Methods,”

IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1421–1434, 2008.

[125] R. Puche-Panadero, M. Pineda-Sanchez, M. Riera-Guasp, J. Roger-Folch, E. Hurtado-

Perez, and J. Perez-Cruz, “Improved Resolution of the MCSA Method Via Hilbert Trans-

form , Enabling the Diagnosis of Rotor Asymmetries at Very Low Slip,” IEEE Trans.

Energy Convers., vol. 24, no. 1, pp. 52–59, 2009.

[126] B. Xu, L. Sun, L. Xu, and G. Xu, “Improvement of the Hilbert Method via ESPRIT for

Detecting Rotor Fault in Induction Motors at Low Slip,” IEEE Trans. Energy Convers.,

vol. 28, no. 1, pp. 225–233, 2013.

[127] M. Pineda-sanchez, J. Perez-cruz, J. Pons-llinares, V. Climente-alarcon, and J. A.

Antonino-daviu, “Application of the Teager – Kaiser Energy Operator to the Fault Di-

agnosis of Induction Motors,” IEEE Trans. Energy Convers., vol. 28, no. 4, pp. 1036–1044,

2013.

[128] C. G. Dias and I. E. Chabu, “Spectral Analysis Using a Hall Effect Sensor for Diagnosing

Broken Bars in Large Induction Motors,” IEEE Trans. Instrum. Meas., vol. 63, no. 12, pp.

2890–2902, 2014.

[129] A. Sapena-Baño, M. Pineda-Sanchez, R. Puche-Panadero, J. Martinez-Roman, and
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